Refinements for Session-typed
Concurrency

Josh Acay & Frank Pfenning

May 4, 2016

Message-passing Concurrency

* Processes represented as nodes
* Channels between processes as edges

e Each channel is “provided” by a specific
process (P provides ¢, Q provides d etc.)

May 4, 2016

Message-passing Concurrency

* Processes compute internally

* Exchange messages along channels

cde

May 4, 2016

Message-passing Concurrency

* Processes compute internally

* Exchange messages along channels

cde

H

May 4, 2016

Message-passing Concurrency

* Processes compute internally

* Exchange messages along channels

cde

H

H

May 4, 2016

Message-passing Concurrency

* Processes compute internally

* Exchange messages along channels

cde

H
%
H

May 4, 2016

Message-passing Concurrency

* Processes compute internally

* Exchange messages along channels

2050,

H

H

May 4, 2016

Message-passing Concurrency

* Processes can also send channels they own

cde

May 4, 2016

Message-passing Concurrency

* Processes can also send channels they own

cde

%

May 4, 2016

Message-passing Concurrency

* Processes can also send channels they own

May 4, 2016

Linear Session-types

 Don’t want to send int if expecting string

Don’t try to receive if other process is not
sending

e Assign types to each channel from provider’s
perspective

c:B /\ d:int > string A A e:1
0\ /) ¢

May 4, 2016

Linear Session-types

 Don’t want to send int if expecting string

Don’t try to receive if other process is not
sending

e Assign types to each channel from provider’s
perspective

CZB‘\ d:string A A @ e:1 @
@

(\ /)
>

May 4, 2016

Linear Session-types

 Don’t want to send int if expecting string

Don’t try to receive if other process is not
sending

e Assign types to each channel from provider’s
perspective

“O——O0—C0
o
0\ |
>

<€

May 4, 2016

Linear Session-types

 Don’t want to send int if expecting string

Don’t try to receive if other process is not
sending

e Assign types to each channel from provider’s
perspective

c:B (\ d:A e-1
4 | ®
>

<€

May 4, 2016

Linear Session-types

 Don’t want to send int if expecting string

Don’t try to receive if other process is not
sending

e Assign types to each channel from provider’s
perspective

c:B /\ d:A
oO—

>

May 4, 2016

Linear Session Types

 Example interface specification:

queue = &{

A —o queue,

@ { : 1, : A ® queue}}

* where A is some predetermined type

1 Terminate

&{lab,:A }. External choice (receive) between lab, continue as A,
A —0B Receive channel of type A, continue as B

TDOB Receive value of type 1, continue as B

®{lab,:A. }. Internal choice (send) between lab,, continue as A,

A ®B Send channel of type A, continue as B

TAB Send value of type 1, continue as B

Implementation of Queues

queue = &{ A —O queue,

®{ : 1, : A ® gqueue}}

empty : queue
g < empty =
case g
- X & recv g
e < empty
g + elem x e
> J. ; close g

e ~e

elem : A —O queue —O queue
qg + elem x r =

case g
> y & recv g ;
r. ; send r v ;
qg + elem x r
> Jg. ; send g xX ;

q < r

May 4, 2016

Intersections and Unions

e Allows describing more interesting behavior
* Intersection of two types: Arn B

— ¢ : An Bif channel c offers both behaviors

e Union of two types: AL B

— ¢ : A u B if channel c offers either behavior

Refinement Types

 What if we want to track more properties of
gueues? Empty, non-empty, even length?

* We can define them in the base system:

empty-queue = &{ : A —O nonempty-queue,
HENCR : 1}}
nonempty-queue = &{ : A —0 nonempty-queue,

: & : A ® gqueue}}

Refinement Types

e But we need intersections and unions to write
Interesting programs

queue A = empty-queue U nonempty-queue

empty : empty-queue

elem : (A —O gueue —O nonempty-queue)

concat : (empty-queue —O0 empty-queue —O empty-queue)

N (queue —O0 nonempty-queue —O0 nonempty-queue)
N (nonempty-queue —O queue —O0 nonempty-queue)

May 4, 2016

Decidability of Type-checking

e Algorithmic system that is easy to translate to
code

* Prove sound and complete with respect to the
original system

e Partial implementation in Haskell

Type Safety

* Progress
— Deadlock freedom in concurrent setting

— At least one process can make progress if the
configuration is well-typed

* Preservation [currently in progress]

— Session fidelity in concurrent setting

— Processes obey session-types

