
Refinements	for	Session-typed	
Concurrency

Josh	Acay	&	Frank	Pfenning

1May	4,	2016

Message-passing	Concurrency

• Processes	represented	as	nodes	
• Channels	between	processes	as	edges	
• Each	channel	is	“provided”	by	a	specific	
process	(P	provides	c,	Q	provides	d	etc.)

P
c

Q
d

R
e

2May	4,	2016

Message-passing	Concurrency

• Processes	compute	internally	
• Exchange	messages	along	channels

P
c

Q
d

R
e

3May	4,	2016

Message-passing	Concurrency

• Processes	compute	internally	
• Exchange	messages	along	channels

P
c

Q
d

R
e

3

3May	4,	2016

Message-passing	Concurrency

• Processes	compute	internally	
• Exchange	messages	along	channels

P
c

Q
d

R
e

3

“aaa”

3May	4,	2016

Message-passing	Concurrency

• Processes	compute	internally	
• Exchange	messages	along	channels

P
c

Q
d

R
e

3

“aaa”

end

3May	4,	2016

Message-passing	Concurrency

• Processes	compute	internally	
• Exchange	messages	along	channels

P
c

Q
d

3

“aaa”

3May	4,	2016

Message-passing	Concurrency

• Processes	can	also	send	channels	they	own

P
c

Q
d

R
e

4May	4,	2016

Message-passing	Concurrency

• Processes	can	also	send	channels	they	own

P
c

Q
d

R
e

e

4May	4,	2016

Message-passing	Concurrency

• Processes	can	also	send	channels	they	own

P
c

Q
d

e

R
e

4May	4,	2016

Linear	Session-types

• Don’t	want	to	send	int	if	expecting	string	
• Don’t	try	to	receive	if	other	process	is	not	
sending	

• Assign	types	to	each	channel	from	provider’s	
perspective

P
c	:	B

Q
d	:	int	⊃	string	∧	A

R
e	:	1

5May	4,	2016

Linear	Session-types

• Don’t	want	to	send	int	if	expecting	string	
• Don’t	try	to	receive	if	other	process	is	not	
sending	

• Assign	types	to	each	channel	from	provider’s	
perspective

P
c	:	B

Q
3

R
e	:	1d	:	string	∧	A

5May	4,	2016

Linear	Session-types

• Don’t	want	to	send	int	if	expecting	string	
• Don’t	try	to	receive	if	other	process	is	not	
sending	

• Assign	types	to	each	channel	from	provider’s	
perspective

P
c	:	B

Q
3

“aaa”

R
e	:	1d	:	A

5May	4,	2016

Linear	Session-types

• Don’t	want	to	send	int	if	expecting	string	
• Don’t	try	to	receive	if	other	process	is	not	
sending	

• Assign	types	to	each	channel	from	provider’s	
perspective

P
c	:	B

Q
3

“aaa”
end

R
e	:	1d	:	A

5May	4,	2016

Linear	Session-types

• Don’t	want	to	send	int	if	expecting	string	
• Don’t	try	to	receive	if	other	process	is	not	
sending	

• Assign	types	to	each	channel	from	provider’s	
perspective

P
c	:	B

Q
3

“aaa”

d	:	A

5May	4,	2016

Linear	Session	Types

• Example	interface	specification:	

1 Terminate
&{labi:Ai}i 	 External	choice	(receive)	between	labi,	continue	as	Ai

A –o B Receive	channel	of	type	A,	continue	as	B	
τ ⊃ B Receive	value	of	type	τ,	continue	as	B
⊕{labi:Ai}i Internal	choice	(send)	between	labi,	continue	as	Ai

A ⊗ B Send	channel	of	type	A,	continue	as	B	
τ ∧ B Send	value	of	type	τ,	continue	as	B

queue = &{enq: A –o queue,
 deq: ⊕{none: 1, some: A ⊗ queue}}

* where A is some predetermined type

6May	4,	2016

Implementation	of	Queues
queue = &{enq: A –o queue,
 deq: ⊕{none: 1, some: A ⊗ queue}}

empty : queue
q ← empty =
 case q
 enq " x ← recv q ;
 e ← empty ;
 q ← elem x e
 deq " q.none ; close q

elem : A –o queue –o queue
q ← elem x r =
 case q
 enq " y ← recv q ;
 r.enq ; send r y ;
 q ← elem x r
 deq " q.some ; send q x ;
 q ← r

7May	4,	2016

Intersections	and	Unions

• Allows	describing	more	interesting	behavior	
• Intersection	of	two	types:	A	⊓	B	
– c	:	A	⊓	B	if	channel	c	offers	both	behaviors	

• Union	of	two	types:	A	⊔	B	
– c	:	A	⊔	B	if	channel	c	offers	either	behavior

8May	4,	2016

Refinement	Types

• What	if	we	want	to	track	more	properties	of	
queues?	Empty,	non-empty,	even	length?		

• We	can	define	them	in	the	base	system:

empty-queue = &{enq: A –o nonempty-queue,
 deq: ⊕{none: 1}}

nonempty-queue = &{enq: A –o nonempty-queue,
 deq: ⊕{some: A ⊗ queue}}

9May	4,	2016

Refinement	Types

• But	we	need	intersections	and	unions	to	write	
interesting	programs

queue A = empty-queue ⊔		nonempty-queue

empty : empty-queue

elem : (A –o queue –o nonempty-queue)

concat : (empty-queue –o empty-queue –o empty-queue)
 ⊓ (queue –o nonempty-queue –o nonempty-queue)
 ⊓ (nonempty-queue –o queue –o nonempty-queue)

10May	4,	2016

Decidability	of	Type-checking

• Algorithmic	system	that	is	easy	to	translate	to	
code	

• Prove	sound	and	complete	with	respect	to	the	
original	system	

• Partial	implementation	in	Haskell

11May	4,	2016

Type	Safety

• Progress	
– 	Deadlock	freedom	in	concurrent	setting	
– At	least	one	process	can	make	progress	if	the	
configuration	is	well-typed	

• Preservation	[currently	in	progress]	
– Session	fidelity	in	concurrent	setting	
– Processes	obey	session-types

12May	4,	2016

