
Josh Acay — July 19, 2023

Provably Correct Compilation for
Distributed Cryptographic

Applications

1

Secure Distributed Applications

2

Network

DaveChuck

BobAlice

Secure Distributed Applications

2

Network

DaveChuck

BobAlice

Zero-Knowledge
Proofs (ZKP)

Secure Multiparty
Computation (MPC)

Replication

Fully Homomorphic
Encryption (FHE)

Local Computation

+

Secure Distributed Applications

2

Difficult and error prone.

Network

DaveChuck

BobAlice

Zero-Knowledge
Proofs (ZKP)

Secure Multiparty
Computation (MPC)

Replication

Fully Homomorphic
Encryption (FHE)

Local Computation

+

3

Viaduct: Let the Compiler Worry About Cryptography

Source Program
+ security policy Viaduct Network

 Replication

MPC

Alice

 Replication

ZKP

Bob

MPC

FHE

Chuck

ZKP

FHE

Dave
Provably correct.

Leaked Password Checking

4

User Passwords

Browser

Database of
Leaked Passwords

Service

Service has a database of leaked passwords.

Browser wants to know if passwords are compromised.

Server-Side Computation is Insecure

5

User Passwords

Browser

Database of
Leaked Passwords

Service

User Passwords

Y/N

Server-Side Computation is Insecure

5

User Passwords

Browser

Database of
Leaked Passwords

Service

User Passwords

Service learns user passwords!

Y/N

Server-Side Computation is Insecure

5

User Passwords

Browser

Database of
Leaked Passwords

Service

User Passwords

Service learns user passwords!

Y/N

Sending database to Browser is not secure either.

Need Cryptography for Security

6

User Passwords

Browser

Database of
Leaked Passwords

Service

Compare

MPC(Browser, Service)

Leaked PasswordsUser Passwords
Y/N

Need Cryptography for Security

6

User Passwords

Browser

Database of
Leaked Passwords

Service

Compare

MPC(Browser, Service)

Leaked PasswordsUser Passwords
Y/N

Difficult to build!

Need Cryptography for Security

6

User Passwords

Browser

Database of
Leaked Passwords

Service

Compare

MPC(Browser, Service)

Leaked PasswordsUser Passwords
Y/N

Difficult to build!

Need Cryptography for Security

6

User Passwords

Browser

Database of
Leaked Passwords

Service

Compare

MPC(Browser, Service)

Leaked PasswordsUser Passwords
Y/N

Difficult to build!

Need Cryptography for Security

6

User Passwords

Browser

Database of
Leaked Passwords

Service

Compare

MPC(Browser, Service)

Leaked PasswordsUser Passwords
Y/N

Difficult to build! Rolling your own crypto!

The Viaduct Approach

host Browser
host Service

fun check_passwords() {
 val b = Browser.input<int>()
 val s = Service.input<Array<int>>()
 val leaked = b ∊ s
 Browser.output(leaked)
}

7

The Viaduct Approach

host Browser
host Service

fun check_passwords() {
 val b = Browser.input<int>()
 val s = Service.input<Array<int>>()
 val leaked = b ∊ s
 Browser.output(leaked)
}

7

Single program

Sequential

Doesn’t mention crypto

Viaduct Synthesizes Secure Protocols

host Browser
host Service

fun check_passwords() {
 val b@Browser = Browser.input<int>()
 val s@Service = Service.input<Array<int>>()
 val leaked@MPC(Browser, Service) = b ∊ s
 Browser.output(leaked)
}

8

Viaduct Synthesizes Secure Protocols

host Browser
host Service

fun check_passwords() {
 val b@Browser = Browser.input<int>()
 val s@Service = Service.input<Array<int>>()
 val leaked@MPC(Browser, Service) = b ∊ s
 Browser.output(leaked)
}

8

How does Viaduct
decide this needs

cryptography?

Viaduct Synthesizes Secure Protocols

host Browser
host Service

fun check_passwords() {
 val b@Browser = Browser.input<int>()
 val s@Service = Service.input<Array<int>>()
 val leaked@MPC(Browser, Service) = b ∊ s
 Browser.output(leaked)
}

8

How does Viaduct
decide this needs

cryptography?

Intutively, involves
data from both hosts.

Viaduct Synthesizes Secure Protocols

host Browser
host Service

fun check_passwords() {
 val b@Browser = Browser.input<int>()
 val s@Service = Service.input<Array<int>>()
 val leaked@MPC(Browser, Service) = b ∊ s
 Browser.output(leaked)
}

8

How does Viaduct
decide this needs

cryptography?

Intutively, involves
data from both hosts.

We need a way to formally specify security policies.

Information Flow Labels

Pair of confidentiality and integrity:

 =〈confidentiality, integrity〉

Each component a boolean formula over hosts

Ordered by implication: A ∧ B ⇒ A ⇒ A ∨ B

ℓ

9

A ∧ B

A B

A ∨ B

more secret,

more trusted

less secret,

less trusted

Data Labels (Standard Information Flow Typing)

fun check_passwords() {

 val b :〈Browser, Browser〉= Browser.input<int>()

10

Data Labels (Standard Information Flow Typing)

fun check_passwords() {

 val b :〈Browser, Browser〉= Browser.input<int>()

 val s :〈Service, Service〉= Service.input<Array<int>>()

10

Data Labels (Standard Information Flow Typing)

fun check_passwords() {

 val b :〈Browser, Browser〉= Browser.input<int>()

 val s :〈Service, Service〉= Service.input<Array<int>>()

 val leaked :〈B ∧ S, B ∨ S〉= b ∊ s

10

Data Labels (Standard Information Flow Typing)

fun check_passwords() {

 val b :〈Browser, Browser〉= Browser.input<int>()

 val s :〈Service, Service〉= Service.input<Array<int>>()

 val leaked :〈B ∧ S, B ∨ S〉= b ∊ s

 Browser.output(leaked)

10

Data Labels (Standard Information Flow Typing)

fun check_passwords() {

 val b :〈Browser, Browser〉= Browser.input<int>()

 val s :〈Service, Service〉= Service.input<Array<int>>()

 val leaked :〈B ∧ S, B ∨ S〉= b ∊ s

 Browser.output(leaked)

10

Check:

- leaked has less confidentiality than Browser

- leaked has more integrity than Browser

- 〈B ∧ S, B ∨ S〉⊑〈B, B〉

Data Labels (Standard Information Flow Typing)

fun check_passwords() {

 val b :〈Browser, Browser〉= Browser.input<int>()

 val s :〈Service, Service〉= Service.input<Array<int>>()

 val leaked :〈B ∧ S, B ∨ S〉= b ∊ s

 Browser.output(leaked)

10

Check:

- leaked has less confidentiality than Browser

- leaked has more integrity than Browser

- 〈B ∧ S, B ∨ S〉⊑〈B, B〉

Both checks fail!

Downgrades Specify Intended Security Policy

fun check_passwords() {

 val b :〈B, B ∧ S〉= endorse(Browser.input(), Service)

 val s :〈B, B ∧ S〉= endorse(Service.input(), Browser)

 val leaked :〈B ∧ S, B ∧ S〉= b ∊ s

 val leaked’ :〈B, B ∧ S〉= declassify(leaked, Browser)

 Browser.output(leaked')
}

11

Downgrades Specify Intended Security Policy

fun check_passwords() {

 val b :〈B, B ∧ S〉= endorse(Browser.input(), Service)

 val s :〈B, B ∧ S〉= endorse(Service.input(), Browser)

 val leaked :〈B ∧ S, B ∧ S〉= b ∊ s

 val leaked’ :〈B, B ∧ S〉= declassify(leaked, Browser)

 Browser.output(leaked')
}

11

“I know this reveals some data to
Browser. That’s intended.”

Downgrades Specify Intended Security Policy

fun check_passwords() {

 val b :〈B, B ∧ S〉= endorse(Browser.input(), Service)

 val s :〈B, B ∧ S〉= endorse(Service.input(), Browser)

 val leaked :〈B ∧ S, B ∧ S〉= b ∊ s

 val leaked’ :〈B, B ∧ S〉= declassify(leaked, Browser)

 Browser.output(leaked')
}

11

“I know this reveals some data to
Browser. That’s intended.”

“Service/Browser accepts this data,
whatever it is.”

Data labels specify confidentiality/integrity requirements.
Assign labels to hosts to capture confidentiality/integrity

guarantees.

12

val x@Replication(A, B) = e
val y@C = x

• Computation and storage replicated

• Verify all replicas are consistent

• Low confidentiality, high integrity:

label(Replication(A, B)) =〈A ∨ B, A ∧ B〉

Replication

13

val x1 = e

A

val x2 = e

B

assert x1 == x2
val y = x1

C
x1 x2

Replication(A, B)

Host Labels

14

Host Confidentiality Integrity

h h h

Replication(h1, h2) h1 ∨ h2 h1 ∧ h2

Host Labels

14

Host Confidentiality Integrity

h h h

Replication(h1, h2) h1 ∨ h2 h1 ∧ h2

MPC(h1, h2) h1 ∧ h2 h1 ∧ h2

Host Labels

14

Host Confidentiality Integrity

h h h

Replication(h1, h2) h1 ∨ h2 h1 ∧ h2

MPC(h1, h2) h1 ∧ h2 h1 ∧ h2

Semi-honest MPC(h1, h2) h1 ∧ h2 h1 ∨ h2

Host Labels

14

Host Confidentiality Integrity

h h h

Replication(h1, h2) h1 ∨ h2 h1 ∧ h2

MPC(h1, h2) h1 ∧ h2 h1 ∧ h2

Semi-honest MPC(h1, h2) h1 ∧ h2 h1 ∨ h2

Commitment(p, v) p p ∧ v

Host Labels

14

Host Confidentiality Integrity

h h h

Replication(h1, h2) h1 ∨ h2 h1 ∧ h2

MPC(h1, h2) h1 ∧ h2 h1 ∧ h2

Semi-honest MPC(h1, h2) h1 ∧ h2 h1 ∨ h2

Commitment(p, v) p p ∧ v

ZKP(p, v) p p ∧ v

Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:

label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ...

val b@A :〈A ∨ B, A〉= ...

val c@A :〈A ∧ B, A〉= ...

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉

Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:

label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ...

val b@A :〈A ∨ B, A〉= ...

val c@A :〈A ∧ B, A〉= ...

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉

Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:

label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ...

val b@A :〈A ∨ B, A〉= ...

val c@A :〈A ∧ B, A〉= ...

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉

Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:

label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ...

val b@A :〈A ∨ B, A〉= ...

val c@A :〈A ∧ B, A〉= ...

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉

Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:

label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ...

val b@A :〈A ∨ B, A〉= ...

val c@A :〈A ∧ B, A〉= ...

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉

Cost Model & Optimal Host Selection

• Labels eliminate insecure host assignments

• This still leaves multiple valid host assignments

• Viaduct solves an optimization problem based on a cost model

• Avoid MPC and ZKP; prefer Local and Replication

• Minimize data movement between hosts

16

Underdetermined Protocol

fun check_passwords() {
 val b@Browser = endorse(Browser.input(), Service)
 val s@Service = endorse(Service.input(), Browser)
 val leaked@MPC(Browser, Service) = b ∊ s
 val leaked’@MPC(B…, S…) = declassify(leaked, Browser)
 Browser.output(leaked’)
}

17

Underdetermined Protocol

fun check_passwords() {
 val b@Browser = endorse(Browser.input(), Service)
 val s@Service = endorse(Service.input(), Browser)
 val leaked@MPC(Browser, Service) = b ∊ s
 val leaked’@MPC(B…, S…) = declassify(leaked, Browser)
 Browser.output(leaked’)
}

17

Implicit communication

Choreographies: Manifesting Communication

fun check_passwords() {
 val b@Browser = endorse(Browser.input(), Service)
 Browser.b ⇝ MPC(Browser, Service).b’
 val s@Service = endorse(Service.input(), Browser)
 Service.s ⇝ MPC(Browser, Service).s’
 val leaked@MPC(Browser, Service) = b' ∊ s’
 val leaked’@MPC(B…, S…) = declassify(leaked, Browser)
 MPC(Browser, Service).leaked’ ⇝ Browser.leaked’’
 Browser.output(leaked’’)
}

18

Choreographies: Manifesting Communication

fun check_passwords() {
 val b@Browser = endorse(Browser.input(), Service)
 Browser.b ⇝ MPC(Browser, Service).b’
 val s@Service = endorse(Service.input(), Browser)
 Service.s ⇝ MPC(Browser, Service).s’
 val leaked@MPC(Browser, Service) = b' ∊ s’
 val leaked’@MPC(B…, S…) = declassify(leaked, Browser)
 MPC(Browser, Service).leaked’ ⇝ Browser.leaked’’
 Browser.output(leaked’’)
}

18

Multiple ways of inserting communication events.

Compilation Overview

19

Endpoint Projection

Cryptographic Instantiation

Source Program + security policy

Choreography

Idealized Distributed Program

Distributed Program + cryptography

Protocol Synthesis
Label Inference

Host Selection

Communication
Manifestation

Compilation Overview

19

Endpoint Projection

Cryptographic Instantiation

Source Program + security policy

Choreography

Idealized Distributed Program

Distributed Program + cryptography

Protocol Synthesis
Label Inference

Host Selection

Communication
Manifestation

We covered
protocol synthesis.

Endpoint Projection

20

val b@Browser = Browser.input()
Browser.b ⇝ MPC(B…, S…).b’
...
Browser.output(leaked’’)

Choreography

val b = input()
send b to MPC(B…, S…)
...
output(leaked’’)

Browser

...

Service

val b’ = receive B…
...

MPC(Browser, Service)

project Serviceproject Browser project MPC

Endpoint Projection

20

val b@Browser = Browser.input()
Browser.b ⇝ MPC(B…, S…).b’
...
Browser.output(leaked’’)

Choreography

val b = input()
send b to MPC(B…, S…)
...
output(leaked’’)

Browser

...

Service

val b’ = receive B…
...

MPC(Browser, Service)

project Serviceproject Browser project MPC

Endpoint Projection

20

val b@Browser = Browser.input()
Browser.b ⇝ MPC(B…, S…).b’
...
Browser.output(leaked’’)

Choreography

val b = input()
send b to MPC(B…, S…)
...
output(leaked’’)

Browser

...

Service

val b’ = receive B…
...

MPC(Browser, Service)

project Serviceproject Browser project MPC

Endpoint Projection

20

val b@Browser = Browser.input()
Browser.b ⇝ MPC(B…, S…).b’
...
Browser.output(leaked’’)

Choreography

val b = input()
send b to MPC(B…, S…)
...
output(leaked’’)

Browser

...

Service

val b’ = receive B…
...

MPC(Browser, Service)

project Serviceproject Browser project MPC

Cryptographic Instantiation

21

...

Browser

...

Service
val b’ = receive B…
val s’ = receive S…
val l = b' ∊ s’
send l to Browser

MPC(Browser, Service)
IDEAL MODEL

REAL IMPLEMENTATION

User Passwords

MPC Library

Browser
Database

MPC Library

Service

Compilation Summary

22

MPC
(Alice, Bob)

Commitment
(Bob, Chuck)

Replication
(Alice, Bob, Chuck)Alice Bob Chuck

val x = e
...Source Program

val x@Alice = e
Alice.x ⇝ MPC(A…, B…).y
...

Choreography

Endpoint Projection

Instantiation

Protocol Synthesis

Bob

MPC
Local Repli.

Commit.

Alice

MPC
Local Repli.

Commit.

Chuck

MPC
Local Repli.

Commit.

Implementation & Scalability

• PLDI ’21. Viaduct: An Extensible, Optimizing Compiler for Secure Distributed
Programs.

• Implements: Replication, Commitment, MPC via ABY, ZKP via libsnark

• Extensible: can easily add more mechanisms

• Optimizing: cost model + constrained optimization problem

• Expressive: Label inference, label polymorphic functions

• Viable: Evaluation and benchmarks

23

Optimization Impact over Naive MPC

24

Benchmark Protocols Speedup over Naive MPC
HHI score Local, MPC 67%

Biometric Match Local, MPC 180%
Historical Millionaires Local, MPC 100%

k-Means MPC 150%
Median Replication, MPC 1700%

Two-Round Bidding Local, MPC 470%
Battleship Replication, ZKP —

Interval ZKP, MPC —

Compiler Correctness

25

Cryptography is notoriously easy to get wrong.

We must prove the correctness of Viaduct.

26

When is a Compiler Correct?

• Viaduct is only useful if developers can reason at the source level.

27

When is a Compiler Correct?

• Viaduct is only useful if developers can reason at the source level.

• Many properties of interest:

• Functional correctness: If Alice inputs 5 and Bob 7, the output is 12.

• Security: Alice cannot infer x; Bob cannot influence y.

• Corruption: When Chuck is malicious…

27

When is a Compiler Correct?

• Viaduct is only useful if developers can reason at the source level.

• Many properties of interest:

• Functional correctness: If Alice inputs 5 and Bob 7, the output is 12.

• Security: Alice cannot infer x; Bob cannot influence y.

• Corruption: When Chuck is malicious…

• The compiler should preserve all properties!

27

Robust Hyperproperty Preservation (RHP)

• Very strong compiler correctness criterion

• Abate et al. (2019). Journey Beyond Full Abstraction. CSF

• “Every hyperproperty source program has, the target has also.”

• Hyperproperties: safety, liveness, noninterference, etc.

• RHP is the right notion of correctness for Viaduct

28

Proof Requirements

1. Property Preserving: facilitates reasoning at source level

2. Extensible: does not fix set of cryptographic protocols

3. Compositional: interfaces with proofs of existing cryptography

29

Universal Composability (UC)

• A framework for defining and proving security of cryptographic protocols

• Sequential and parallel composition maintains UC security

• UC simulation implies RHP

• Patrignani et al. (2019). Universal Composability is Secure Compilation.
CoRR

• We independently verify UC implies RHP for our framework.

30

Defining Security with Ideal Functionalities

31

val m = recv Alice
send len(m) to Adv
send m to Bob

Secure Channel (Alice, Bob)

Defining Security with Ideal Functionalities

31

val m = recv Alice
send len(m) to Adv
send m to Bob

Secure Channel (Alice, Bob)

val x = Alice.input
send x to SC(A…, B…)

Alice

val x = recv SC(A…, B…)

Bob

Defining Security with Ideal Functionalities

31

val m = recv Alice
send len(m) to Adv
send m to Bob

Secure Channel (Alice, Bob)

val x = Alice.input
send x to SC(A…, B…)

Alice

val x = recv SC(A…, B…)

Bob

“Obviously secure”

Defining Security with Ideal Functionalities

31

val m = recv Alice
send len(m) to Adv
send m to Bob

Secure Channel (Alice, Bob)

val x = Alice.input
send x to SC(A…, B…)

Alice

val x = recv SC(A…, B…)

Bob

Leaks length of message
but nothing else

“Obviously secure”

Defining Security with Ideal Functionalities

31

val m = recv Alice
send len(m) to Adv
send m to Bob

Secure Channel (Alice, Bob)

val x = Alice.input
send x to SC(A…, B…)

Alice

val x = recv SC(A…, B…)

Bob

Leaks length of message
but nothing else

Adversary cannot change
message

“Obviously secure”

UC Simulation

32

val m = recv Alice
send len(m) to Adv
send m to Bob

Secure Channel (Alice, Bob)

val x = Alice.input
send x to SC(A…, B…)

Alice

val x = recv SC(A…, B…)

Bob

REAL IDEAL

Bob

Alice

Insecure Network

Encryption MAC

Encryption MAC

≤
(simulates)

UC Simulation

33

≈

Every attack on the real system can be
translated to an attack on the ideal system.

Env

Adv

Network
Alice
Enc

Bob
Enc

REAL

Sim

SC(A, B)Alice Bob

IDEAL

Adv

Cannot distinguish
real from ideal

UC Composition

34

MPC
(Alice, Bob)

UC Composition

34

≤Bob
MPC

Alice
MPC

MPC
(Alice, Bob)

UC Composition

34

≤Bob
MPC

Alice
MPC

MPC
(Alice, Bob)

≤

THEN
MPC

(Alice, Bob)

ZKP FHEZKP FHE

Bob
MPC

Alice
MPCSubprotocol

Structure of a UC Proof

• Formally, UC states:

•

• To prove UC simulation:

• Define real protocol and ideal functionality

• Construct a Simulator given an arbitrary Adversary

• Come up with invariant maintained throughout execution

• Show invariant implies bisimulation from perspective of Environment

∀Adv∃Sim∀Env ⋅ Adv ∥ Real ∼Env Sim ∥ Ideal

35

Show Compiled Code Simulates Source

36

Source
Program≤

REAL IDEAL

Alice
MPC

Local
Repli.

Bob
MPC

Local
Repli.

Show Compiled Code Simulates Source

36

Source
Program≤

REAL IDEAL

Alice
MPC

Local
Repli.

Bob
MPC

Local
Repli.

Cryptographic

Distributed

Concurrent

Information flow

Centralized

Sequential

IDEAL

≤≤

HYBRID

≤

REAL

Source
ProgramChoreography

Replication
(Alice, Bob)

MPC
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation

UC Simulation is Transitive

37

Correctness of Cryptographic Instantiation

38

IDEAL

≤≤

HYBRID

≤

REAL

Source
ProgramChoreography

Replication
(Alice, Bob)

MPC
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation

Appeal to Existing UC Proofs

39

Appeal to Existing UC Proofs

• Take an existing library and proof of correctness

39

≤Bob
ABY

Alice
ABY

ABY Spec
(Alice, Bob)

Appeal to Existing UC Proofs

• Take an existing library and proof of correctness

39

≤Bob
ABY

Alice
ABY

ABY Spec
(Alice, Bob)

• Verify library interface matches our ideal functionality

≤ MPC
(Alice, Bob)

ABY Spec
(Alice, Bob)

Appeal to Existing UC Proofs

• Apply repeatedly for each ideal host

• Uses transitivity and UC composition

40

Appeal to Existing UC Proofs

• Apply repeatedly for each ideal host

• Uses transitivity and UC composition

40

MPC
(Alice, Bob)

ZKP
(Bob, Chuck)

Appeal to Existing UC Proofs

• Apply repeatedly for each ideal host

• Uses transitivity and UC composition

40

≤
MPC

(Alice, Bob)

ZKP
(Bob, Chuck)

Bob
ABY

Alice
ABY

ZKP
(Bob, Chuck)

Appeal to Existing UC Proofs

• Apply repeatedly for each ideal host

• Uses transitivity and UC composition

40

≤
MPC

(Alice, Bob)

ZKP
(Bob, Chuck)

Bob
ABY

Alice
ABY

ZKP
(Bob, Chuck)

≤
Bob

 ABY

libsnark

Alice
ABY

Chuck
libsnark

Correctness of Endpoint Projection

41

IDEAL

≤≤

HYBRID

≤

REAL

Source
ProgramChoreography

Replication
(Alice, Bob)

MPC
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation

Appeal to Choreography Literature

• This is exactly what choreography literature tries to prove

• “Soundness and completeness of endpoint projection”

• Luís Cruz-Filipe et al. (2022). A Formal Theory of Choreographic
Programming. CoRR

• Choreographies are alternative representations of distributed systems

• But they have the same exact behavior (i.e., traces)

42

Choreographies are Concurrent

43

val x@Alice = input
Bob.output(2)

Choreographyval x = input

Alice

output(2)

Bob ≤

Choreographies are Concurrent

43

val x@Alice = input
Bob.output(2)

Choreographyval x = input

Alice

output(2)

Bob ≤

Adversary can step
Bob before Alice

Choreographies are Concurrent

43

val x@Alice = input
Bob.output(2)

Choreographyval x = input

Alice

output(2)

Bob ≤

Adversary can step
Bob before Alice

Simulator can step
Bob before Alice

Choreographies Model Communication

44

val x@Alice = input
Alice.x ⇝ Bob.y

Choreography
val x = input
send x to Bob

Alice

val y = receive Alice

Bob ≤

Choreographies Model Communication

44

val x@Alice = input
Alice.x ⇝ Bob.y

Choreography
val x = input
send x to Bob

Alice

val y = receive Alice

Bob ≤

Generates message
readable by Adversary

Choreographies Model Communication

44

val x@Alice = input
Alice.x ⇝ Bob.y

Choreography
val x = input
send x to Bob

Alice

val y = receive Alice

Bob ≤

Generates message
readable by Adversary

Generates message
readable by Simulator

Choreographies and Projection are Bisimilar

45

~ Choreography

Replication
(Alice, Bob)

MPC
(Alice, Bob)

BobAlice

Choreographies and Projection are Bisimilar

45

~ Choreography

Replication
(Alice, Bob)

MPC
(Alice, Bob)

BobAlice

Adv Sim = Adv

Correctness of Protocol Synthesis

46

IDEAL

≤≤

HYBRID

≤

REAL

Source
ProgramChoreography

Replication
(Alice, Bob)

MPC
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation

Comparing Choreography to Source

47

val x = e
Bob.output(2)

Source Program

≤val x@Alice = e
Bob.output(2)
Alice.x ⇝ Bob.y

Choreography

Comparing Choreography to Source

• Similar:

• Abstract away cryptography

• Centralized

47

val x = e
Bob.output(2)

Source Program

≤val x@Alice = e
Bob.output(2)
Alice.x ⇝ Bob.y

Choreography

Comparing Choreography to Source

• Similar:

• Abstract away cryptography

• Centralized

47

val x = e
Bob.output(2)

Source Program

≤val x@Alice = e
Bob.output(2)
Alice.x ⇝ Bob.y

Choreography

• Different:

1. Locations & explicit communication

2. Concurrency

≤≤Choreography

Concurrent

Visible
Communication

Ideal
Choreography

Concurrent

Invisible
Communication

Source
Program

Sequential

No
Communication

Sequential
Choreography

Sequential

Invisible
Communication

≤

Break Up Proof Using Transitivity

Define intermediate languages with altered semantics.
48

≤≤Choreography

Concurrent

Visible
Communication

Ideal
Choreography

Concurrent

Invisible
Communication

Source
Program

Sequential

No
Communication

Sequential
Choreography

Sequential

Invisible
Communication

≤

Correctness of Idealization

49

Explicit Communication: Confidentiality

50

val x = Alice.input

Source Program

≤val x@Alice = input
Alice.x ⇝ Bob.y

Choreography

Explicit Communication: Confidentiality

• Generates event in trace

• If Bob is corrupted:

• x is leaked to Adversary

50

val x = Alice.input

Source Program

≤val x@Alice = input
Alice.x ⇝ Bob.y

Choreography

Explicit Communication: Confidentiality

• Generates event in trace

• If Bob is corrupted:

• x is leaked to Adversary

50

val x = Alice.input

Source Program

≤val x@Alice = input
Alice.x ⇝ Bob.y

Choreography

No visible events

Explicit Communication: Confidentiality

• Generates event in trace

• If Bob is corrupted:

• x is leaked to Adversary

50

val x = Alice.input

Source Program

≤val x@Alice = input
Alice.x ⇝ Bob.y

Choreography

No visible events

/

Explicit Communication: Integrity

51

val x = 1
Bob.output(x)

Source Program

val x@Alice = 1
Alice.x ⇝ Bob.x’
Bob.output(x’)

Choreography

≤/

Explicit Communication: Integrity

51

val x = 1
Bob.output(x)

Source Program

val x@Alice = 1
Alice.x ⇝ Bob.x’
Bob.output(x’)

Choreography

42

ALICE CORRUPTED

≤/

Explicit Communication: Integrity

• If Alice is corrupted:

• Adversary controls x’

51

val x = 1
Bob.output(x)

Source Program

val x@Alice = 1
Alice.x ⇝ Bob.x’
Bob.output(x’)

Choreography

42

ALICE CORRUPTED

≤/

Explicit Communication: Integrity

• If Alice is corrupted:

• Adversary controls x’

51

val x = 1
Bob.output(x)

Source Program

val x@Alice = 1
Alice.x ⇝ Bob.x’
Bob.output(x’)

Choreography

Always outputs 1

42

ALICE CORRUPTED

≤/

Information Flow Typing to the Rescue

• Define information flow type system for choreographies

• Require protocol synthesis to output well-typed choreographies

52

val x@Alice = 1
Alice.x ⇝ Bob.x’
Bob.output(x’)

Integrity Violation

Bob doesn’t trust Alice
with integrity

val x@Alice = input
Alice.x ⇝ Bob.y

Confidentiality Violation

Alice doesn’t trust Bob
with confidentiality

Downgrades Relax Security Policy

• Use declassify/endorse to specify intended policy:

53

val x@Alice = input
val x’ = decl(x, Bob)
Alice.x’ ⇝ Bob.y

Allow Send to Bob

val x@Alice = 1
Alice.x ⇝ Bob.x’
val x’’ = end(x, Bob)
Bob.output(x’’)

Allow Receive from Alice

Downgrades as Adversarial Interaction

54

Downgrades as Adversarial Interaction

• We model downgrades as communication with the Adversary

• declassify(x, Host): send x to Adversary (if Host is public)

• endorse(x, Host): receive x from Adversary (if x is untrusted)

54

Downgrades as Adversarial Interaction

• We model downgrades as communication with the Adversary

• declassify(x, Host): send x to Adversary (if Host is public)

• endorse(x, Host): receive x from Adversary (if x is untrusted)

• Commonplace in UC:

54

val m = recv Alice
send len(m) to Adv
send m to Bob

Secure Channel (Alice, Bob)
val m = recv Alice
declassify(len(m))
send m to Bob

Secure Channel (Alice, Bob)

Verifying the Type System

• Type system ensures

• Secret data is not sent to public hosts

• Untrusted data does not influence trusted hosts

• How do we know?

55

Ideal Choreographies

Communication generates
external events

Untrusted hosts produce
arbitrary data

declassify/endorse internal

56

Same Code

Ideal Choreography

≤Same Code

Choreography

Communication generates
internal events

Untrusted data replaced with
dummy value (i.e., 0)

declassify/endorse external

Ideal Choreographies

Communication generates
external events

Untrusted hosts produce
arbitrary data

declassify/endorse internal

56

Same Code

Ideal Choreography

≤Same Code

Choreography

Communication generates
internal events

Untrusted data replaced with
dummy value (i.e., 0)

declassify/endorse external

All corruption localized to declassify/endorse.

Real Simulates Ideal

57

≤
Ideal

Choreography
Real

Choreography

Adv

Real Simulates Ideal

57

≤
Ideal

Choreography
Real

Choreography

Adv Simulator

Adv
Public View of

Real
Choreography

Real Simulates Ideal

57

≤
Ideal

Choreography
Real

Choreography

Adv Simulator

Adv
Public View of

Real
Choreography

Agree on
public values

Agree on
trusted values

Real Simulates Ideal

57

≤
Ideal

Choreography
Real

Choreography

Adv Simulator

Adv
Public View of

Real
Choreography

Agree on
public values

Agree on
trusted values

Simulator uses

• declassify to recreate
messages no longer leaked

• endorse to corrupt data no
longer corruptible

≤≤Choreography

Concurrent

Visible
Communication

Ideal
Choreography

Concurrent

Invisible
Communication

Source
Program

Sequential

No
Communication

Sequential
Choreography

Sequential

Invisible
Communication

≤

Correctness of Sequentialization

58

Unrestricted Concurrency Violates Security

59

val g’ = endorse(guess, C)
val s’ = decl(secret, C)

Source Program

I picked a secret number.
You guess, then I reveal.

Unrestricted Concurrency Violates Security

59

val g’ = endorse(guess, C)
val s’ = decl(secret, C)

Source Program

val g’@S1 = endorse(guess, C)
val s’@S2 = decl(secret, C)

Insecure Choreography

I picked a secret number.
You guess, then I reveal.

This choreography can
reorder these events!

≤/

Require Synchronization
• A novel type system for choreographies that checks synchronization

• Require protocol synthesis to output well-synchronized choreographies

• Requires minimal synchronization

• Outputs (declassify) must be ordered wrt. prior inputs (endorse)

• We do not order internal events, inputs wrt. inputs etc.

60

Require Synchronization
• A novel type system for choreographies that checks synchronization

• Require protocol synthesis to output well-synchronized choreographies

• Requires minimal synchronization

• Outputs (declassify) must be ordered wrt. prior inputs (endorse)

• We do not order internal events, inputs wrt. inputs etc.

60

val g’@S1 = endorse(guess, C)
S1.0 ⇝ S2._
val s’@S2 = decl(secret, C)

Secure Choreography

val g’@S1 = endorse(guess, C)
val s’@S2 = decl(secret, C)

Insecure Choreography

Ideal Simulates Sequential

61

val x = S2.input()
val g’ = endorse(guess, C)
S1.0 ⇝ S2._
val s’ = decl(secret, C)

Sequential Choreography

≤
Must evaluate: x, g’, s’May evaluate: g’, x, s’

Ideal Simulates Sequential

61

val x = S2.input()
val g’ = endorse(guess, C)
S1.0 ⇝ S2._
val s’ = decl(secret, C)

Sequential Choreography

val x = S2.input()
val g’@S1 = endorse(guess, C)
S1.0 ⇝ S2._
val s’@S2 = decl(secret, C)

Concurrent Choreography

≤
Must evaluate: x, g’, s’May evaluate: g’, x, s’

Ideal Simulates Sequential

62

Ideal Simulates Sequential

• Well-synchronized choreography simulates fully sequential choreography

62

Ideal Simulates Sequential

• Well-synchronized choreography simulates fully sequential choreography

• Two choreographies can fall out of sync, but remain joinable:

• They only differ by internal actions

• They can perform the same output at the same time

62

Ideal Simulates Sequential

• Well-synchronized choreography simulates fully sequential choreography

• Two choreographies can fall out of sync, but remain joinable:

• They only differ by internal actions

• They can perform the same output at the same time

• Proved via confluence and a diamond lemma

62

We prove con�uence through a diamond lemma, which allows reordering indepen-

dent actions.

De�nition 3.8.21 (Independent Actions). Actions 01 and 02 are independent, written

01 ?? 02, if one is an input while the other is an output, or they are on di�erent channels.

We write tr1 ?? tr2 if 01 ?? 02 for all 01 2 tr1 and 02 2 tr2.

Lemma 3.8.22 (Diamond for Processes). If F
tr1��!c

i F1,F
tr2��!c

i F2, and tr1 ?? tr2, then

F1
tr2��!c

i F
0 and F2

tr1��!c
i F

0 for some F 0. Diagrammatically:

F

F1 F2

9F 0

tr1 tr2

tr2 tr1

Lemma 3.8.22 does the heavy lifting when proving multiple con�uence results below,

and requires quite a bit of work to show. We �rst prove a diamond lemma for statements,

and then lift it to processes.

Lemma 3.8.23 (Half Diamond for Statements). If B
01�!i B1, B

02�!c
i B2, and 01 ?? 02, then

B1
02�!c

i B
0 and B2

01�!i B0 for some B0.

Proof. By case analysis on B
02�!c

i B2.

• Case B�S��������. Contradicts 01 ?? 02.

• Case B�D����. By case analysis on the evaluation context followed by inversion

on B
01�!i B1. The step for 01 involves only the head statement and ignores all future

statements, whereas the step for 02 ignores the head statement and involves only

a statement in the future. Thus, they can be performed in sequence in either order

without changing the end result.

101

≤≤Choreography

Concurrent

Visible
Communication

Ideal
Choreography

Concurrent

Invisible
Communication

Source
Program

Sequential

No
Communication

Sequential
Choreography

Sequential

Invisible
Communication

≤

Dropping Host Annotations (Bookkeeping)

63

Host Annotations Don’t Do Anything

64

val x = e
Bob.output(x)

Source Program

≤val x@Alice = e
Alice.x ⇝ Bob.y
Bob.output(y)

Ideal, Sequential
Choreography

Host Annotations Don’t Do Anything

64

val x = e
Bob.output(x)

Source Program

≤val x@Alice = e
Alice.x ⇝ Bob.y
Bob.output(y)

Ideal, Sequential
Choreography

Internal step

Host Annotations Don’t Do Anything

64

val x = e
Bob.output(x)

Source Program

≤val x@Alice = e
Alice.x ⇝ Bob.y
Bob.output(y)

Ideal, Sequential
Choreography

Only differ in number of internal steps.

Internal step

IDEAL

≤≤

HYBRID

≤

REAL

Source
ProgramChoreography

Replication
(Alice, Bob)

MPC
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation

Proof Summary

65

Conclusion

66

• Model cryptographic primitives as ideal hosts

• Data labels capture security requirements

• Host labels capture security guarantees

• Choreographies simplify distributed reasoning

• UC allows separate proofs for protocol synthesis
and cryptographic instantiation

• UC simulation implies a strong compiler
correctness condition (RHP)

viaduct-lang.org

Label Inference

Host Selection

Endpoint Projection

Cryptographic
Instantiation

Synthesis
Proof

Instantiation
Proof

http://viaduct-lang.org

