Intersections and Unions of Session Types

Coșku Acay Frank Pfenning

Carnegie Mellon University
School of Computer Science

ITRS 2016

Overview

(1) Background

- Message-passing Concurrency
- Session Types
- Subtyping
- Configurations and Reduction
(2) Intersections and Unions
- Intersection Types
- Union Types
- Reinterpreting Choice
(3) Algorithmic System
(4) Metatheory

Plan

(1) Background

- Message-passing Concurrency
- Session Types
- Subtyping
- Configurations and Reduction
(2) Intersections and Unions
- Intersection Types
- Union Types
- Reinterpreting Choice
(3) Algorithmic System
(4) Metatheory

Setting

- Processes represented as nodes
- Channels go between processes and represented as edges
- Each channel is "provided" by a specific process (e.g. P provides c, Q provides d etc.): one-to-one correspondence between channels and processes

Communication

- Processes compute internally
- Exchange messages along channels

Communication

- Processes compute internally
- Exchange messages along channels

Communication

- Processes compute internally
- Exchange messages along channels

Communication

- Processes compute internally
- Exchange messages along channels

*Note that communication is synchronous.

Higher-order Messages

- Processes can also send channels they own

Higher-order Messages

- Processes can also send channels they own

Higher-order Messages

- Processes can also send channels they own

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel (from provider's perspective).

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel (from provider's perspective).

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel (from provider's perspective).

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel (from provider's perspective).

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel (from provider's perspective).

Session Types

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel (from provider's perspective).

Why linear?

- Sessions are resources: communicating along a channel consumes the old type
- Contraction would violate type safety
- Weakening would work, but we keep things simple

Linear Propositions as Session Types

$\mathbf{1}$
$A \otimes B$
$\tau \wedge B$
$\oplus\left\{l a b_{k}: A_{k}\right\}_{k \in I}$
$A \multimap B$
$\tau \supset B$
$\&\left\{l a b_{k}: A_{k}\right\}_{k \in I}$
$\mu t . A_{t}$
send end and terminate send channel of type A and continue as B send value of type τ and continue as B send $l a b_{i}$ and continue as A_{i} for some $i \in I$ receive channel of type A and continue as B receive value of type τ and continue as B receive $l a b_{i}$ and continue as A_{i} for some $i \in I$ (equi-)recursive type

Linear Propositions as Session Types

1
$A \otimes B$
$\tau \wedge B$
$\oplus\left\{l a b_{k}: A_{k}\right\}_{k \in I}$
$A \multimap B$
$\tau \supset B$
$\&\left\{l a b_{k}: A_{k}\right\}_{k \in I}$
$\mu t . A_{t}$
send end and terminate send channel of type A and continue as B send value of type τ and continue as B send $l a b_{i}$ and continue as A_{i} for some $i \in I$ receive channel of type A and continue as B receive value of type τ and continue as B receive $l a b_{i}$ and continue as A_{i} for some $i \in I$ (equi-)recursive type

Example: Queue Interface

$$
\begin{aligned}
\text { type queue }=\& & \{\text { enq }: A \text {-o queue } \\
& , \text { deg }:+\{n o n e: 1, \text { some }: A * \text { queue }\}
\end{aligned}
$$

Proof Terms as Concurrent Processes

$$
P, Q, R::=
$$

$x \leftarrow P_{x} ; Q_{x}$
$c \leftarrow d$
close $c \mid$ wait c; P
send $c\left(y \leftarrow P_{y}\right) ; Q \mid x \leftarrow \operatorname{recv} c ; R_{x}$
cut (spawn)
id (forward)
c.lab; $P \mid$ case c of $\left\{l a b_{k} \rightarrow Q_{k}\right\}_{k \in I}$

1
$A \otimes B, A \multimap B$
$\&\left\{l a b_{k}: A_{k}\right\}_{k \in I}, \oplus\left\{l a b_{k}: A_{k}\right\}_{k \in I}$

Example: An Implementation of Queues

type queue $=\&\{$ enq $: A$-o queue	
	, deg $:+\{$ none : 1 , some : A * queue $\}$

empty : queue
$\mathrm{q}<-$ empty $=$ case q of enq -> $x<-r e c v q ;$
e <- empty;
$q<-$ elem x e
deq -> q.none; close q
elem : A -o queue -o queue
$\mathrm{q}<-$ elem $\mathrm{x}=\mathrm{case} \mathrm{q}$ of
enq -> $y<-r e c v q$;
$r . e n q ;$ send $r y$;
$q<-e l e m x r$
deq $->$ q.some; send $q x ;$
$\mathrm{q}<-\mathrm{r}$

Process Typing

Typing judgement has the form $\Psi \vdash_{\eta} P::(c: A)$ meaning "process P offers along channel c the session A under the context Ψ." η tracks recursive variables.

Process Typing

Typing judgement has the form $\Psi \vdash_{\eta} P::(c: A)$ meaning "process P offers along channel c the session A under the context Ψ." η tracks recursive variables.

Some examples:

$$
\begin{gathered}
\overline{c: A \vdash d \leftarrow c::(d: A)} \text { id } \\
\frac{\Psi \vdash P_{c}::(c: A) \quad \Psi^{\prime}, c: A \vdash Q_{c}::(d: D)}{\Psi, \Psi^{\prime} \vdash c \leftarrow P_{c} ; Q_{c}::(d: D)} \text { cut } \\
\overline{\emptyset \vdash \operatorname{close} c::(c: \mathbf{1})} \mathbf{1} \quad \frac{\Psi \vdash P::(d: A)}{\Psi, c: \mathbf{1} \vdash \text { wait } c ; P::(d: A)} 1 \mathrm{~L} \\
\frac{\Psi \vdash P::(d: A) \quad \Psi^{\prime} \vdash Q::(c: B)}{\Psi, \Psi^{\prime} \vdash \operatorname{send} c\left(d \leftarrow P_{d}\right) ; Q::(c: A \otimes B)} \otimes \mathrm{R}
\end{gathered}
$$

Subtyping

- Width and depth subtyping for n-ary choices
- Width: \& $\left\{l a b_{k}: A_{k}\right\}_{k \in I} \leq \&\left\{l a b_{k}: A_{k}\right\}_{k \in J}$ whenever $J \subseteq I$
- Depth: \& $\left\{l a b_{k}: A_{k}\right\}_{k \in I} \leq \&\left\{l a b_{k}: A_{k}^{\prime}\right\}_{k \in I}$ whenever $A_{i} \leq A_{i}^{\prime}$

Subtyping

- Width and depth subtyping for n-ary choices
- Width: \& $\left\{l a b_{k}: A_{k}\right\}_{k \in I} \leq \&\left\{l a b_{k}: A_{k}\right\}_{k \in J}$ whenever $J \subseteq I$
- Depth: \& $\left\{l a b_{k}: A_{k}\right\}_{k \in I} \leq \&\left\{l a b_{k}: A_{k}^{\prime}\right\}_{k \in I}$ whenever $A_{i} \leq A_{i}^{\prime}$
- Defined coinductively because of recursive types

Subtyping

- Width and depth subtyping for n-ary choices
- Width: \& $\left\{l a b_{k}: A_{k}\right\}_{k \in I} \leq \&\left\{l a b_{k}: A_{k}\right\}_{k \in J}$ whenever $J \subseteq I$
- Depth: \& $\left\{l a b_{k}: A_{k}\right\}_{k \in I} \leq \&\left\{l a b_{k}: A_{k}^{\prime}\right\}_{k \in I}$ whenever $A_{i} \leq A_{i}^{\prime}$
- Defined coinductively because of recursive types

Introduced to process typing using subsumption:

$$
\begin{gathered}
\frac{\Psi \vdash_{\eta} P::\left(c: A^{\prime}\right) \quad A^{\prime} \leq A}{\Psi \vdash_{\eta} P::(c: A)} \text { SubR } \\
\frac{\Psi, c: A^{\prime} \vdash_{\eta} P::(d: B) \quad A \leq A^{\prime}}{\Psi, c: A \vdash_{\eta} P::(d: B)} \text { SubL }
\end{gathered}
$$

Configurations

- A processes by itself is not very useful in concurrent setting
- Need to be able to talk about interactions

Configurations

- A processes by itself is not very useful in concurrent setting
- Need to be able to talk about interactions
- Use a process configuration, which is simply a set of labelled processes: $\Omega=\operatorname{proc}_{c_{1}}\left(P_{1}\right), \ldots, \operatorname{proc}_{c_{n}}\left(P_{n}\right)$.

Configurations

- A processes by itself is not very useful in concurrent setting
- Need to be able to talk about interactions
- Use a process configuration, which is simply a set of labelled processes: $\Omega=\operatorname{proc}_{c_{1}}\left(P_{1}\right), \ldots, \operatorname{proc}_{c_{n}}\left(P_{n}\right)$.
- Typing judgement, $\models \Omega:: \Psi$, imposes a tree structure (ensures linearity)

Reduction

Configurations reduce by interaction. Some examples:

$$
\begin{aligned}
\text { id } & : \operatorname{proc}_{c}(c \leftarrow d) \multimap\{c=d\} \\
\text { cut } & : \operatorname{proc}_{c}\left(x \leftarrow P_{x} ; Q_{x}\right) \multimap\left\{\exists \operatorname{a.proc}_{a}\left(P_{a}\right) \otimes \operatorname{proc}_{c}\left(Q_{a}\right)\right\} \\
\text { one } & : \operatorname{proc}_{c}(\text { close } c) \otimes \operatorname{proc}_{d}(\text { wait } c ; P) \multimap\left\{\operatorname{proc}_{d}(P)\right\}
\end{aligned}
$$

Plan

(1) Background

- Message-passing Concurrency
- Session Types
- Subtyping
- Configurations and Reduction
(2) Intersections and Unions
- Intersection Types
- Union Types
- Reinterpreting Choice
(3) Algorithmic System
(4) Metatheory

Intersections and Unions

What if we want to track more properties of queues?

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty, even length?

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty, even length?

These can be defined in the base system:

$$
\begin{aligned}
& \text { type empty-queue }=\text { \&\{ enq : A -o queue } \\
& \text { \} deg : +\{none: } 1\} \\
& \text { type nonempty-queue }=\&\{\text { enq : } A \text {-o queue } \\
& \text {, deg : +\{some: A * queue \} }
\end{aligned}
$$

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty, even length?

These can be defined in the base system:

$$
\begin{aligned}
& \text { type empty-queue }=\text { \&\{ enq : A -o queue } \\
& \text { \} deg : +\{none: } 1\} \\
& \text { type nonempty-queue }=\&\{\text { enq : } A \text {-o queue } \\
& \text { \} deg : +\{some : A * queue\} }
\end{aligned}
$$

However, there is no way to properly track them!

We cannot track multiple refinements.

We cannot track multiple refinements. Consider concat : queue -o queue -o queue that concatenates two queues. It has many types but no most general type:

```
concat : empty-queue -o empty-queue -o empty-queue
concat : queue -o nonempty-queue -o nonempty-queue
concat : nonempty-queue -o queue -o nonempty-queue
```


Intersection Types

- Intersection of two types: $A \sqcap B$
- $c: A \sqcap B$ if channel c offers both behaviors simultaneously

Intersection Types

- Intersection of two types: $A \sqcap B$
- $c: A \sqcap B$ if channel c offers both behaviors simultaneously

$$
\frac{\Psi \vdash_{\eta} P::(c: A) \quad \Psi \vdash_{\eta} P::(c: B)}{\Psi \vdash_{\eta} P::(c: A \sqcap B)} \sqcap \mathrm{R}
$$

$$
\frac{\Psi, c: A \vdash_{\eta} P::(d: D)}{\Psi, c: A \sqcap B \vdash_{\eta} P::(d: D)} \sqcap \mathrm{L}_{1}
$$

$$
\frac{\Psi, c: B \vdash_{\eta} P::(d: D)}{\Psi, c: A \sqcap B \vdash_{\eta} P::(d: D)} \sqcap \mathrm{L}_{2}
$$

Intersections Solve the Previous Problem

We can now specify multiple behavioral properties:

```
concat : empty-queue -o empty-queue -o empty-queue
    and queue -o nonempty-queue -o nonempty-queue
    and nonempty-queue -o queue -o nonempty-queue
```


Union Types

- Union of two types: $A \sqcup B$
- $c: A \sqcup B$ if channel c offers either behavior

Union Types

- Union of two types: $A \sqcup B$
- $c: A \sqcup B$ if channel c offers either behavior
- Dual to intersections

Union Types

- Union of two types: $A \sqcup B$
- $c: A \sqcup B$ if channel c offers either behavior
- Dual to intersections

$$
\begin{gathered}
\frac{\Psi \vdash_{\eta} P::(c: A)}{\Psi \vdash_{\eta} P::(c: A \sqcup B)} \sqcup \mathrm{R}_{1} \quad \frac{\Psi \vdash_{\eta} P::(c: B)}{\Psi \vdash_{\eta} P::(c: A \sqcup B)} \sqcup \mathrm{R}_{2} \\
\frac{\Psi, c: A \vdash_{\eta} P::(d: D)}{\Psi, c: A \sqcup B \vdash_{\eta} P::(d: D)} \quad \Psi \vdash_{\eta} P::(d: D) \\
\hline \mathrm{L}
\end{gathered}
$$

Reasons for Adding Unions

- Maintain the symmetry of the system
- Makes working with internal choice more convenient
- Interpretation of internal choice (we will explain later)

Reasons for Adding Unions

- Maintain the symmetry of the system
- Makes working with internal choice more convenient
- Interpretation of internal choice (we will explain later)

We can also write things like:
type queue = empty-queue or nonempty-queue

Reinterpreting Choice

Consider \& $\{$ inl : $A, \operatorname{inr}: B\}$

Reinterpreting Choice

Consider \& $\{$ inl : $A, \operatorname{inr}: B\}$
This type says: "I will act as A if you send me inl and I will act as B if you send me inr."

Reinterpreting Choice

Consider \& $\{$ inl : $A, \operatorname{inr}: B\}$
This type says: "I will act as A if you send me inl and I will act as B if you send me inr."

Interpreting and as \square gives
$\&\{\operatorname{inl}: A, \operatorname{inr}: B\} \approx \&\{\operatorname{inl}: A\} \sqcap \&\{\operatorname{inr}: B\}$.

Reinterpreting Choice - General Case

Generalizing to n-ary choice and dualising gives:

$$
\begin{aligned}
& \&\left\{l a b_{k}: A_{k}\right\}_{k \in I} \triangleq \prod_{k \in I} \&\left\{l a b_{k}: A_{k}\right\} \\
& \oplus\left\{l a b_{k}: A_{k}\right\}_{k \in I} \triangleq \bigsqcup_{k \in I} \oplus\left\{l a b_{k}: A_{k}\right\}
\end{aligned}
$$

Easy to verify these definitions satisfy the typing rules.

Reinterpreting Choice - General Case

Generalizing to n-ary choice and dualising gives:

$$
\begin{aligned}
& \&\left\{l a b_{k}: A_{k}\right\}_{k \in I} \triangleq \prod_{k \in I} \&\left\{l a b_{k}: A_{k}\right\} \\
& \oplus\left\{l a b_{k}: A_{k}\right\}_{k \in I} \triangleq \bigsqcup_{k \in I} \oplus\left\{l a b_{k}: A_{k}\right\}
\end{aligned}
$$

Easy to verify these definitions satisfy the typing rules.
Suggests treating intersections and unions as implicit choice.

Plan

(1) Background

- Message-passing Concurrency
- Session Types
- Subtyping
- Configurations and Reduction
(2) Intersections and Unions
- Intersection Types
- Union Types
- Reinterpreting Choice
(3) Algorithmic System
(4) Metatheory

Algorithmic Subtyping

Idea: make $\leq \sqcap \mathrm{L}_{\{1,2\}}$ and $\leq \sqcup \mathrm{R}_{\{1,2\}}$ invertible so we can apply eagerly.

$$
\begin{array}{ll}
\frac{A_{\{1,2\}} \leq B}{\overline{A_{1} \sqcap A_{2} \leq B}} \leq \sqcap \mathrm{L}_{\{1,2\}} & \longrightarrow \\
\frac{\alpha, A_{1}, A_{2} \Rightarrow \beta}{\alpha, A_{1} \sqcap A_{2} \Rightarrow \beta} \Rightarrow \sqcap \mathrm{~L} \\
\overline{A \leq B_{\{1,2\}}} & \leq \mathrm{R}_{\{1,2\}}
\end{array} \quad \longrightarrow \frac{\alpha \Rightarrow \beta, A_{1}, A_{2}}{\alpha \Rightarrow \beta, A_{1} \sqcup A_{2}} \Rightarrow \sqcup \mathrm{R}
$$

Algorithmic Subtyping

Idea: make $\leq \sqcap \mathrm{L}_{\{1,2\}}$ and $\leq \sqcup \mathrm{R}_{\{1,2\}}$ invertible so we can apply eagerly.

$$
\begin{array}{ll}
\frac{A_{\{1,2\}} \leq B}{\overline{A_{1} \sqcap A_{2} \leq B}} \leq \sqcap \mathrm{L}_{\{1,2\}} & \longrightarrow \\
\frac{\alpha, A_{1}, A_{2} \Rightarrow \beta}{\alpha, A_{1} \sqcap A_{2} \Rightarrow \beta} \Rightarrow \sqcap \mathrm{~L} \\
\frac{A \leq B_{\{1,2\}}}{A \leq B_{1} \sqcup B_{2}} & \square \mathrm{R}_{\{1,2\}}
\end{array} \quad \longrightarrow \frac{\alpha \Rightarrow \beta, A_{1}, A_{2}}{\alpha \Rightarrow \beta, A_{1} \sqcup A_{2}} \Rightarrow \sqcup \mathrm{R}
$$

Also admits distributivity:

$$
\begin{aligned}
& \left(A_{1} \sqcup B\right) \sqcap\left(A_{2} \sqcup B\right) \equiv\left(A_{1} \sqcap A_{2}\right) \sqcup B \\
& \left(A_{1} \sqcup A_{2}\right) \sqcap B \equiv\left(A_{1} \sqcap B\right) \sqcup\left(A_{2} \sqcap B\right)
\end{aligned}
$$

Turns out to be necessary for soundness of algorithmic typing.

Algorithmic Type Checking

- Make $\sqcap \mathrm{L}_{\{1,2\}}$ and $\sqcup \mathrm{R}_{\{1,2\}}$ invertible so we can apply eagerly.

Algorithmic Type Checking

- Make $\sqcap L_{\{1,2\}}$ and $\sqcup \mathrm{R}_{\{1,2\}}$ invertible so we can apply eagerly.
- Delay subtyping to id
- Label cut with it's type

Algorithmic Type Checking

- Make $\sqcap L_{\{1,2\}}$ and $\sqcup \mathrm{R}_{\{1,2\}}$ invertible so we can apply eagerly.
- Delay subtyping to id
- Label cut with it's type

$$
\begin{aligned}
& \frac{\Psi, c: A_{1,2} \vdash_{\eta} P::(d: D)}{\Psi, c: A_{1} \sqcap A_{2} \vdash_{\eta} P::(d: D)} \sqcap \mathrm{L}_{1,2} \quad \rightarrow \frac{\Psi, c:(\alpha, A, B) \vdash_{\eta} P::(d: \beta)}{\Psi, c:(\alpha, A \sqcap B) \vdash_{\eta} P::(d: \beta)} \sqcap \mathrm{L} \\
& \frac{\Psi \vdash_{\eta} P::\left(c: A_{1,2}\right)}{\Psi \vdash_{\eta} P::\left(c: A_{1} \sqcup A_{2}\right)} \sqcup \mathrm{R}_{1,2} \quad \rightarrow \frac{\Psi \vdash_{\eta} P::(c: A, B, \alpha)}{\Psi \vdash_{\eta} P::(c: A \sqcup B, \alpha)} \sqcup \mathrm{R}
\end{aligned}
$$

Algorithmic Type Checking

- Make $\sqcap L_{\{1,2\}}$ and $\sqcup \mathrm{R}_{\{1,2\}}$ invertible so we can apply eagerly.
- Delay subtyping to id
- Label cut with it's type

$$
\begin{gathered}
\frac{\Psi, c: A_{1,2} \vdash_{\eta} P::(d: D)}{\Psi, c: A_{1} \sqcap A_{2} \vdash_{\eta} P::(d: D)} \sqcap \mathrm{L}_{1,2} \rightarrow \frac{\Psi, c:(\alpha, A, B) \Vdash_{\eta} P::(d: \beta)}{\Psi, c:(\alpha, A \sqcap B) \vdash_{\eta} P::(d: \beta)} \sqcap \mathrm{L} \\
\frac{\Psi \vdash_{\eta} P::\left(c: A_{1,2}\right)}{\Psi \vdash_{\eta} P::\left(c: A_{1} \sqcup A_{2}\right)} \sqcup \mathrm{R}_{1,2} \rightarrow \frac{\Psi \Vdash_{\eta} P::(c: A, B, \alpha)}{\Psi \vdash_{\eta} P::(c: A \sqcup B, \alpha)} \sqcup \mathrm{R} \\
\frac{\alpha \Rightarrow \beta}{c: \alpha \Vdash_{\eta} d \leftarrow c::(d: \beta)} \text { id } \\
\frac{\Psi \vdash_{\eta} P_{c}::(c: A) \quad \Psi^{\prime}, c: A \Vdash_{\eta} Q_{c}::(d: \alpha)}{\Psi, \Psi^{\prime} \vdash_{\eta} c: A \leftarrow P_{c} ; Q_{c}::(d: \alpha)} \text { cut }
\end{gathered}
$$

Results

Theorem (Completeness of Algorithmic Subtyping)

Algorithmic subtyping is complete with respect to declarative subtyping.

Theorem (Equivalence of Algorithmic Typing)

Algorithmic typing is sound and complete with respect to declarative typing.

Plan

(1) Background

- Message-passing Concurrency
- Session Types
- Subtyping
- Configurations and Reduction
(2) Intersections and Unions
- Intersection Types
- Union Types
- Reinterpreting Choice
(3) Algorithmic System

4 Metatheory

Type Safety

We have proved progress and preservation for the system extended with intersections and unions.

Type Safety

We have proved progress and preservation for the system extended with intersections and unions.

Progress \rightarrow deadlock-freedom
Type preservation \rightarrow session fidelity

Progress

Theorem (Progress)

If $\models \Omega:: \Psi$ then either
(1) $\Omega \longrightarrow \Omega^{\prime}$ for some Ω^{\prime}, or
(2) Ω is poised*.

Proof.

By induction on $\models \Omega:: \Psi$ followed by a nested induction on the typing of the root process. When two processes are involved, we also need inversion on client's typing.
*A process is poised if it is waiting to communicate with its client.

Type Preservation

Theorem (Preservation)

If $\models \Omega:: \Psi$ and $\Omega \longrightarrow \Omega^{\prime}$ then $\models \Omega^{\prime}:: \Psi$.

Proof.

By inversion on $\Omega \longrightarrow \Omega^{\prime}$, followed by induction on the typing judgments of the involved processes. Each branch requires a hand-rolled induction hypothesis.

Conclusion and Highlights

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

- Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).

Conclusion and Highlights

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

- Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).
- More general than refinement system of Freeman and Pfenning

Conclusion and Highlights

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

- Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).
- More general than refinement system of Freeman and Pfenning
- Subtyping resembles Gentzen's multiple conclusion calculus

Conclusion and Highlights

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

- Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).
- More general than refinement system of Freeman and Pfenning
- Subtyping resembles Gentzen's multiple conclusion calculus
- Algorithmic typing mirrors subtyping

Future Work

- Simple: integrate a functional language, extend to shared channels and asynchronous communication

Future Work

- Simple: integrate a functional language, extend to shared channels and asynchronous communication
- More interesting: Add polymorphism and abstract types
- Polymorphism is non-trivial with equirecursive types

Future Work

- Simple: integrate a functional language, extend to shared channels and asynchronous communication
- More interesting: Add polymorphism and abstract types
- Polymorphism is non-trivial with equirecursive types
- Applications other than refinements?

The End

