
Intersections and Unions of Session Types

Coşku Acay Frank Pfenning

Carnegie Mellon University
School of Computer Science

ITRS 2016

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 1 / 35

Overview

1 Background
Message-passing Concurrency
Session Types
Subtyping
Configurations and Reduction

2 Intersections and Unions
Intersection Types
Union Types
Reinterpreting Choice

3 Algorithmic System

4 Metatheory

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 2 / 35

Plan

1 Background
Message-passing Concurrency
Session Types
Subtyping
Configurations and Reduction

2 Intersections and Unions
Intersection Types
Union Types
Reinterpreting Choice

3 Algorithmic System

4 Metatheory

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 3 / 35

Setting

Processes represented as nodes

Channels go between processes and represented as edges

Each channel is “provided” by a specific process (e.g. P provides c , Q
provides d etc.): one-to-one correspondence between channels and
processes

P Q R

S

T

c d e

f

g

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 4 / 35

Communication

Processes compute internally

Exchange messages along channels

P Q R
c d e

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 5 / 35

Communication

Processes compute internally

Exchange messages along channels

P Q R
c d e

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 5 / 35

Communication

Processes compute internally

Exchange messages along channels

P Q R
c d e

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 5 / 35

Communication

Processes compute internally

Exchange messages along channels

P Q R
c d e

3

"aaa"

end

∗Note that communication is synchronous.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 5 / 35

Higher-order Messages

Processes can also send channels they own

P Q R

R

c d e

e

e

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 6 / 35

Higher-order Messages

Processes can also send channels they own

P Q R

R

c d e

e

e

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 6 / 35

Higher-order Messages

Processes can also send channels they own

P Q R

R

c d e

e

e

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 6 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel (from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel

(from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel (from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel (from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel (from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel (from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel (from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Session Types

Don’t want to send int if expecting string

Don’t try to receive if other process is not sending

Solution: Assign types to each channel (from provider’s perspective).

P Q R
c : A d : int ⊃ string ∧ Bd : string ∧ Bd : B e : 1

3

"aaa"

end

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 7 / 35

Why linear?

Sessions are resources: communicating along a channel consumes the
old type

Contraction would violate type safety

Weakening would work, but we keep things simple

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 8 / 35

Linear Propositions as Session Types

1 send end and terminate
A⊗ B send channel of type A and continue as B
τ ∧ B send value of type τ and continue as B
⊕{labk : Ak}k∈I send labi and continue as Ai for some i ∈ I
A(B receive channel of type A and continue as B
τ ⊃ B receive value of type τ and continue as B
&{labk : Ak}k∈I receive labi and continue as Ai for some i ∈ I
µt.At (equi-)recursive type

Example: Queue Interface

type queue = &{ enq : A -o queue

, deg : +{none : 1, some : A * queue}

}

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 9 / 35

Linear Propositions as Session Types

1 send end and terminate
A⊗ B send channel of type A and continue as B
τ ∧ B send value of type τ and continue as B
⊕{labk : Ak}k∈I send labi and continue as Ai for some i ∈ I
A(B receive channel of type A and continue as B
τ ⊃ B receive value of type τ and continue as B
&{labk : Ak}k∈I receive labi and continue as Ai for some i ∈ I
µt.At (equi-)recursive type

Example: Queue Interface

type queue = &{ enq : A -o queue

, deg : +{none : 1, some : A * queue}

}

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 9 / 35

Proof Terms as Concurrent Processes

P,Q,R ::=

x ← Px ; Qx cut (spawn)
c ← d id (forward)
close c | wait c ; P 1
send c (y ← Py) ; Q | x ← recv c ; Rx A⊗ B, A(B
c .lab ; P | case c of {labk → Qk}k∈I &{labk : Ak}k∈I , ⊕{labk : Ak}k∈I

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 10 / 35

Example: An Implementation of Queues

type queue = &{ enq : A -o queue

, deg : +{none : 1, some : A * queue}

}

empty : queue

q <- empty = case q of

enq -> x <- recv q;

e <- empty;

q <- elem x e

deq -> q.none; close q

elem : A -o queue -o queue

q <- elem x r = case q of

enq -> y <- recv q;

r.enq; send r y;

q <- elem x r

deq -> q.some; send q x;

q <- r
C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 11 / 35

Process Typing

Typing judgement has the form Ψ `η P :: (c : A) meaning “process P
offers along channel c the session A under the context Ψ.” η tracks
recursive variables.

Some examples:

c : A ` d ← c :: (d : A)
id

Ψ ` Pc :: (c : A) Ψ′, c : A ` Qc :: (d : D)

Ψ,Ψ′ ` c ← Pc ; Qc :: (d : D)
cut

∅ ` close c :: (c : 1)
1R

Ψ ` P :: (d : A)

Ψ, c : 1 ` wait c ; P :: (d : A)
1L

Ψ ` P :: (d : A) Ψ′ ` Q :: (c : B)

Ψ,Ψ′ ` send c (d ← Pd) ; Q :: (c : A⊗ B)
⊗R

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 12 / 35

Process Typing

Typing judgement has the form Ψ `η P :: (c : A) meaning “process P
offers along channel c the session A under the context Ψ.” η tracks
recursive variables.

Some examples:

c : A ` d ← c :: (d : A)
id

Ψ ` Pc :: (c : A) Ψ′, c : A ` Qc :: (d : D)

Ψ,Ψ′ ` c ← Pc ; Qc :: (d : D)
cut

∅ ` close c :: (c : 1)
1R

Ψ ` P :: (d : A)

Ψ, c : 1 ` wait c ; P :: (d : A)
1L

Ψ ` P :: (d : A) Ψ′ ` Q :: (c : B)

Ψ,Ψ′ ` send c (d ← Pd) ; Q :: (c : A⊗ B)
⊗R

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 12 / 35

Subtyping

Width and depth subtyping for n-ary choices

Width: &{labk : Ak}k∈I ≤ &{labk : Ak}k∈J whenever J ⊆ I

Depth: &{labk : Ak}k∈I ≤ &{labk : A′k}k∈I whenever Ai ≤ A′i

Defined coinductively because of recursive types

Introduced to process typing using subsumption:

Ψ `η P :: (c : A′) A′ ≤ A

Ψ `η P :: (c : A)
SubR

Ψ, c : A′ `η P :: (d : B) A ≤ A′

Ψ, c : A `η P :: (d : B)
SubL

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 13 / 35

Subtyping

Width and depth subtyping for n-ary choices

Width: &{labk : Ak}k∈I ≤ &{labk : Ak}k∈J whenever J ⊆ I

Depth: &{labk : Ak}k∈I ≤ &{labk : A′k}k∈I whenever Ai ≤ A′i
Defined coinductively because of recursive types

Introduced to process typing using subsumption:

Ψ `η P :: (c : A′) A′ ≤ A

Ψ `η P :: (c : A)
SubR

Ψ, c : A′ `η P :: (d : B) A ≤ A′

Ψ, c : A `η P :: (d : B)
SubL

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 13 / 35

Subtyping

Width and depth subtyping for n-ary choices

Width: &{labk : Ak}k∈I ≤ &{labk : Ak}k∈J whenever J ⊆ I

Depth: &{labk : Ak}k∈I ≤ &{labk : A′k}k∈I whenever Ai ≤ A′i
Defined coinductively because of recursive types

Introduced to process typing using subsumption:

Ψ `η P :: (c : A′) A′ ≤ A

Ψ `η P :: (c : A)
SubR

Ψ, c : A′ `η P :: (d : B) A ≤ A′

Ψ, c : A `η P :: (d : B)
SubL

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 13 / 35

Configurations

A processes by itself is not very useful in concurrent setting

Need to be able to talk about interactions

Use a process configuration, which is simply a set of labelled
processes: Ω = procc1(P1), . . . , proccn(Pn).

Typing judgement, |= Ω :: Ψ, imposes a tree structure (ensures
linearity)

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 14 / 35

Configurations

A processes by itself is not very useful in concurrent setting

Need to be able to talk about interactions

Use a process configuration, which is simply a set of labelled
processes: Ω = procc1(P1), . . . , proccn(Pn).

Typing judgement, |= Ω :: Ψ, imposes a tree structure (ensures
linearity)

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 14 / 35

Configurations

A processes by itself is not very useful in concurrent setting

Need to be able to talk about interactions

Use a process configuration, which is simply a set of labelled
processes: Ω = procc1(P1), . . . , proccn(Pn).

Typing judgement, |= Ω :: Ψ, imposes a tree structure (ensures
linearity)

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 14 / 35

Reduction

Configurations reduce by interaction. Some examples:

id : procc(c ← d)({c = d}
cut : procc(x ← Px ; Qx)({∃a.proca(Pa)⊗ procc(Qa)}
one : procc(close c)⊗ procd(wait c ; P)({procd(P)}

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 15 / 35

Plan

1 Background
Message-passing Concurrency
Session Types
Subtyping
Configurations and Reduction

2 Intersections and Unions
Intersection Types
Union Types
Reinterpreting Choice

3 Algorithmic System

4 Metatheory

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 16 / 35

Intersections and Unions

What if we want to track more properties of queues?

Empty, non-empty,
even length?

These can be defined in the base system:

type empty -queue = &{ enq : A -o queue

, deg : +{none : 1}

}

type nonempty -queue = &{ enq : A -o queue

, deg : +{some : A * queue}

}

However, there is no way to properly track them!

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 17 / 35

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty,
even length?

These can be defined in the base system:

type empty -queue = &{ enq : A -o queue

, deg : +{none : 1}

}

type nonempty -queue = &{ enq : A -o queue

, deg : +{some : A * queue}

}

However, there is no way to properly track them!

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 17 / 35

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty,
even length?

These can be defined in the base system:

type empty -queue = &{ enq : A -o queue

, deg : +{none : 1}

}

type nonempty -queue = &{ enq : A -o queue

, deg : +{some : A * queue}

}

However, there is no way to properly track them!

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 17 / 35

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty,
even length?

These can be defined in the base system:

type empty -queue = &{ enq : A -o queue

, deg : +{none : 1}

}

type nonempty -queue = &{ enq : A -o queue

, deg : +{some : A * queue}

}

However, there is no way to properly track them!

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 17 / 35

We cannot track multiple refinements.

Consider
concat : queue -o queue -o queue that concatenates two queues. It has
many types but no most general type:

concat : empty -queue -o empty -queue -o empty -queue

concat : queue -o nonempty -queue -o nonempty -queue

concat : nonempty -queue -o queue -o nonempty -queue

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 18 / 35

We cannot track multiple refinements. Consider
concat : queue -o queue -o queue that concatenates two queues. It has
many types but no most general type:

concat : empty -queue -o empty -queue -o empty -queue

concat : queue -o nonempty -queue -o nonempty -queue

concat : nonempty -queue -o queue -o nonempty -queue

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 18 / 35

Intersection Types

Intersection of two types: A u B

c : A u B if channel c offers both behaviors simultaneously

Ψ `η P :: (c : A) Ψ `η P :: (c : B)

Ψ `η P :: (c : A u B)
uR

Ψ, c : A `η P :: (d : D)

Ψ, c : A u B `η P :: (d : D)
uL1

Ψ, c : B `η P :: (d : D)

Ψ, c : A u B `η P :: (d : D)
uL2

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 19 / 35

Intersection Types

Intersection of two types: A u B

c : A u B if channel c offers both behaviors simultaneously

Ψ `η P :: (c : A) Ψ `η P :: (c : B)

Ψ `η P :: (c : A u B)
uR

Ψ, c : A `η P :: (d : D)

Ψ, c : A u B `η P :: (d : D)
uL1

Ψ, c : B `η P :: (d : D)

Ψ, c : A u B `η P :: (d : D)
uL2

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 19 / 35

Intersections Solve the Previous Problem

We can now specify multiple behavioral properties:

concat : empty -queue -o empty -queue -o empty -queue

and queue -o nonempty -queue -o nonempty -queue

and nonempty -queue -o queue -o nonempty -queue

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 20 / 35

Union Types

Union of two types: A t B

c : A t B if channel c offers either behavior

Dual to intersections

Ψ `η P :: (c : A)

Ψ `η P :: (c : A t B)
tR1

Ψ `η P :: (c : B)

Ψ `η P :: (c : A t B)
tR2

Ψ, c : A `η P :: (d : D) Ψ, c : B `η P :: (d : D)

Ψ, c : A t B `η P :: (d : D)
tL

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 21 / 35

Union Types

Union of two types: A t B

c : A t B if channel c offers either behavior

Dual to intersections

Ψ `η P :: (c : A)

Ψ `η P :: (c : A t B)
tR1

Ψ `η P :: (c : B)

Ψ `η P :: (c : A t B)
tR2

Ψ, c : A `η P :: (d : D) Ψ, c : B `η P :: (d : D)

Ψ, c : A t B `η P :: (d : D)
tL

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 21 / 35

Union Types

Union of two types: A t B

c : A t B if channel c offers either behavior

Dual to intersections

Ψ `η P :: (c : A)

Ψ `η P :: (c : A t B)
tR1

Ψ `η P :: (c : B)

Ψ `η P :: (c : A t B)
tR2

Ψ, c : A `η P :: (d : D) Ψ, c : B `η P :: (d : D)

Ψ, c : A t B `η P :: (d : D)
tL

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 21 / 35

Reasons for Adding Unions

Maintain the symmetry of the system

Makes working with internal choice more convenient

Interpretation of internal choice (we will explain later)

We can also write things like:

type queue = empty -queue or nonempty -queue

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 22 / 35

Reasons for Adding Unions

Maintain the symmetry of the system

Makes working with internal choice more convenient

Interpretation of internal choice (we will explain later)

We can also write things like:

type queue = empty -queue or nonempty -queue

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 22 / 35

Reinterpreting Choice

Consider &{inl : A, inr : B}

This type says: “I will act as A if you send me inl and I will act as B if
you send me inr.”

Interpreting and as u gives
&{inl : A, inr : B} ≈ &{inl : A} u&{inr : B}.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 23 / 35

Reinterpreting Choice

Consider &{inl : A, inr : B}

This type says: “I will act as A if you send me inl and I will act as B if
you send me inr.”

Interpreting and as u gives
&{inl : A, inr : B} ≈ &{inl : A} u&{inr : B}.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 23 / 35

Reinterpreting Choice

Consider &{inl : A, inr : B}

This type says: “I will act as A if you send me inl and I will act as B if
you send me inr.”

Interpreting and as u gives
&{inl : A, inr : B} ≈ &{inl : A} u&{inr : B}.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 23 / 35

Reinterpreting Choice - General Case

Generalizing to n-ary choice and dualising gives:

&{labk : Ak}k∈I ,
l

k∈I
&{labk : Ak}

⊕ {labk : Ak}k∈I ,
⊔
k∈I
⊕{labk : Ak}

Easy to verify these definitions satisfy the typing rules.

Suggests treating intersections and unions as implicit choice.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 24 / 35

Reinterpreting Choice - General Case

Generalizing to n-ary choice and dualising gives:

&{labk : Ak}k∈I ,
l

k∈I
&{labk : Ak}

⊕ {labk : Ak}k∈I ,
⊔
k∈I
⊕{labk : Ak}

Easy to verify these definitions satisfy the typing rules.

Suggests treating intersections and unions as implicit choice.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 24 / 35

Plan

1 Background
Message-passing Concurrency
Session Types
Subtyping
Configurations and Reduction

2 Intersections and Unions
Intersection Types
Union Types
Reinterpreting Choice

3 Algorithmic System

4 Metatheory

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 25 / 35

Algorithmic Subtyping

Idea: make ≤ uL{1,2} and ≤ tR{1,2} invertible so we can apply eagerly.

A{1,2} ≤ B

A1 u A2 ≤ B
≤ uL{1,2} −→

α,A1,A2 ⇒ β

α,A1 u A2 ⇒ β
⇒ uL

A ≤ B{1,2}

A ≤ B1 t B2
≤ tR{1,2} −→

α⇒ β,A1,A2

α⇒ β,A1 t A2
⇒ tR

Also admits distributivity:

(A1 t B) u (A2 t B) ≡ (A1 u A2) t B

(A1 t A2) u B ≡ (A1 u B) t (A2 u B)

Turns out to be necessary for soundness of algorithmic typing.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 26 / 35

Algorithmic Subtyping

Idea: make ≤ uL{1,2} and ≤ tR{1,2} invertible so we can apply eagerly.

A{1,2} ≤ B

A1 u A2 ≤ B
≤ uL{1,2} −→

α,A1,A2 ⇒ β

α,A1 u A2 ⇒ β
⇒ uL

A ≤ B{1,2}

A ≤ B1 t B2
≤ tR{1,2} −→

α⇒ β,A1,A2

α⇒ β,A1 t A2
⇒ tR

Also admits distributivity:

(A1 t B) u (A2 t B) ≡ (A1 u A2) t B

(A1 t A2) u B ≡ (A1 u B) t (A2 u B)

Turns out to be necessary for soundness of algorithmic typing.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 26 / 35

Algorithmic Type Checking

Make uL{1,2} and tR{1,2} invertible so we can apply eagerly.

Delay subtyping to id

Label cut with it’s type

Ψ, c : A1,2 `η P :: (d : D)

Ψ, c : A1 u A2 `η P :: (d : D)
uL1,2 →

Ψ, c : (α,A,B) η P :: (d : β)

Ψ, c : (α,A u B) η P :: (d : β)
uL

Ψ `η P :: (c : A1,2)

Ψ `η P :: (c : A1 t A2)
tR1,2 →

Ψ η P :: (c : A,B, α)

Ψ η P :: (c : A t B, α)
tR

α⇒ β

c : α η d ← c :: (d : β)
id

Ψ η Pc :: (c : A) Ψ′, c : A η Qc :: (d : α)

Ψ,Ψ′ η c : A← Pc ; Qc :: (d : α)
cut

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 27 / 35

Algorithmic Type Checking

Make uL{1,2} and tR{1,2} invertible so we can apply eagerly.
Delay subtyping to id

Label cut with it’s type

Ψ, c : A1,2 `η P :: (d : D)

Ψ, c : A1 u A2 `η P :: (d : D)
uL1,2 →

Ψ, c : (α,A,B) η P :: (d : β)

Ψ, c : (α,A u B) η P :: (d : β)
uL

Ψ `η P :: (c : A1,2)

Ψ `η P :: (c : A1 t A2)
tR1,2 →

Ψ η P :: (c : A,B, α)

Ψ η P :: (c : A t B, α)
tR

α⇒ β

c : α η d ← c :: (d : β)
id

Ψ η Pc :: (c : A) Ψ′, c : A η Qc :: (d : α)

Ψ,Ψ′ η c : A← Pc ; Qc :: (d : α)
cut

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 27 / 35

Algorithmic Type Checking

Make uL{1,2} and tR{1,2} invertible so we can apply eagerly.
Delay subtyping to id

Label cut with it’s type

Ψ, c : A1,2 `η P :: (d : D)

Ψ, c : A1 u A2 `η P :: (d : D)
uL1,2 →

Ψ, c : (α,A,B) η P :: (d : β)

Ψ, c : (α,A u B) η P :: (d : β)
uL

Ψ `η P :: (c : A1,2)

Ψ `η P :: (c : A1 t A2)
tR1,2 →

Ψ η P :: (c : A,B, α)

Ψ η P :: (c : A t B, α)
tR

α⇒ β

c : α η d ← c :: (d : β)
id

Ψ η Pc :: (c : A) Ψ′, c : A η Qc :: (d : α)

Ψ,Ψ′ η c : A← Pc ; Qc :: (d : α)
cut

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 27 / 35

Algorithmic Type Checking

Make uL{1,2} and tR{1,2} invertible so we can apply eagerly.
Delay subtyping to id

Label cut with it’s type

Ψ, c : A1,2 `η P :: (d : D)

Ψ, c : A1 u A2 `η P :: (d : D)
uL1,2 →

Ψ, c : (α,A,B) η P :: (d : β)

Ψ, c : (α,A u B) η P :: (d : β)
uL

Ψ `η P :: (c : A1,2)

Ψ `η P :: (c : A1 t A2)
tR1,2 →

Ψ η P :: (c : A,B, α)

Ψ η P :: (c : A t B, α)
tR

α⇒ β

c : α η d ← c :: (d : β)
id

Ψ η Pc :: (c : A) Ψ′, c : A η Qc :: (d : α)

Ψ,Ψ′ η c : A← Pc ; Qc :: (d : α)
cut

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 27 / 35

Results

Theorem (Completeness of Algorithmic Subtyping)

Algorithmic subtyping is complete with respect to declarative subtyping.

Theorem (Equivalence of Algorithmic Typing)

Algorithmic typing is sound and complete with respect to declarative
typing.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 28 / 35

Plan

1 Background
Message-passing Concurrency
Session Types
Subtyping
Configurations and Reduction

2 Intersections and Unions
Intersection Types
Union Types
Reinterpreting Choice

3 Algorithmic System

4 Metatheory

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 29 / 35

Type Safety

We have proved progress and preservation for the system extended with
intersections and unions.

Progress → deadlock-freedom

Type preservation → session fidelity

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 30 / 35

Type Safety

We have proved progress and preservation for the system extended with
intersections and unions.

Progress → deadlock-freedom

Type preservation → session fidelity

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 30 / 35

Progress

Theorem (Progress)

If |= Ω :: Ψ then either

1 Ω −→ Ω′ for some Ω′, or

2 Ω is poised∗.

Proof.

By induction on |= Ω :: Ψ followed by a nested induction on the typing of
the root process. When two processes are involved, we also need inversion
on client’s typing.

∗A process is poised if it is waiting to communicate with its client.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 31 / 35

Type Preservation

Theorem (Preservation)

If |= Ω :: Ψ and Ω −→ Ω′ then |= Ω′ :: Ψ.

Proof.

By inversion on Ω −→ Ω′, followed by induction on the typing judgments
of the involved processes. Each branch requires a hand-rolled induction
hypothesis.

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 32 / 35

Conclusion and Highlights

We introduced intersection and union types to a session-typed process
calculus and demonstrated their usefulness.

Unions work naturally. The elimination rule we give has been shown
unsound in the presence of effects (even non-termination).

More general than refinement system of Freeman and Pfenning

Subtyping resembles Gentzen’s multiple conclusion calculus

Algorithmic typing mirrors subtyping

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 33 / 35

Conclusion and Highlights

We introduced intersection and union types to a session-typed process
calculus and demonstrated their usefulness.

Unions work naturally. The elimination rule we give has been shown
unsound in the presence of effects (even non-termination).

More general than refinement system of Freeman and Pfenning

Subtyping resembles Gentzen’s multiple conclusion calculus

Algorithmic typing mirrors subtyping

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 33 / 35

Conclusion and Highlights

We introduced intersection and union types to a session-typed process
calculus and demonstrated their usefulness.

Unions work naturally. The elimination rule we give has been shown
unsound in the presence of effects (even non-termination).

More general than refinement system of Freeman and Pfenning

Subtyping resembles Gentzen’s multiple conclusion calculus

Algorithmic typing mirrors subtyping

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 33 / 35

Conclusion and Highlights

We introduced intersection and union types to a session-typed process
calculus and demonstrated their usefulness.

Unions work naturally. The elimination rule we give has been shown
unsound in the presence of effects (even non-termination).

More general than refinement system of Freeman and Pfenning

Subtyping resembles Gentzen’s multiple conclusion calculus

Algorithmic typing mirrors subtyping

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 33 / 35

Future Work

Simple: integrate a functional language, extend to shared channels
and asynchronous communication

More interesting: Add polymorphism and abstract types

Polymorphism is non-trivial with equirecursive types

Applications other than refinements?

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 34 / 35

Future Work

Simple: integrate a functional language, extend to shared channels
and asynchronous communication

More interesting: Add polymorphism and abstract types

Polymorphism is non-trivial with equirecursive types

Applications other than refinements?

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 34 / 35

Future Work

Simple: integrate a functional language, extend to shared channels
and asynchronous communication

More interesting: Add polymorphism and abstract types

Polymorphism is non-trivial with equirecursive types

Applications other than refinements?

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 34 / 35

The End

C. Acay & F. Pfenning (CMU) Intersections and Unions of Session Types ITRS 2016 35 / 35

	Background
	Message-passing Concurrency
	Session Types
	Subtyping
	Configurations and Reduction

	Intersections and Unions
	Intersection Types
	Union Types
	Reinterpreting Choice

	Algorithmic System
	Metatheory

