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“Oh, wow. That’s an intense line of questioning, Snuffles.”

Summer Smith

“When life gives you lemons, don’t make lemonade. Make life take the lemons back! Get

mad! I don’t want your damn lemons, what the hell am I supposed to do with these? ”

Cave Johnson



Abstract

Prior work has established the logical connection between linear sequent calculus and

session-typed message-passing concurrent computation. The basic system was shown

to guarantee strong properties such as session fidelity and deadlock freedom. In this

thesis, we extend the basic type system with intersection and union types in order to

express multiple behavioral properties of processes in a single type. In the presence of

equirecursive types and a natural notion of subtyping, the resulting system turns out to

be strong enough to statically prove many useful properties. We present our system and

illustrate its expressive power with examples.
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Chapter 1

Introduction

A concurrent system consists of processes that work together to compute a result. In the

message-passing formulation of concurrency, interaction between processes is established

by exchanging messages through channels that go between them. Session types are

assigned to channels in a type safe setting to prescribe the communication behavior along

channels. The processes at each end of a channel must respect this type when using the

said channel.

Recently, session-typed message-passing concurrency has been put on the firm founda-

tions of logic by establishing a Curry-Howard correspondence to intuitionistic linear

sequent calculus [4, 18, 16]. In this formulation, linear propositions are interpreted as

session-types, proofs as processes, and cut elimination as communication. The basic

type system described in prior work is enough to guarantee strong properties such as

deadlock freedom and session fidelity, and the theory can accommodate many different

types of communication such as synchronous or asynchronous (we stick to synchronous

communication to keep things simple). On the other hand, many interesting behavioral

properties turn out to be inexpressible using the basic type system. This usually leads to

having to implement impossible cases (which cannot offer any interesting behavior and

generally terminate the program). The type checker cannot verify that these cases are in

fact impossible, which is not only annoying but generally leads to errors when those cases

turn out to be relevant.

In this thesis, we extend the type system of [18] with intersection and union types in

order to specify and statically verify more interesting behavioral properties of processes.

Previously, Freeman and Pfenning has shown how intersections can be used as refinements

in a conventional functional language [11]. We hope to carry their success into the

concurrent setting and expand on it by introducing unions as well.

1



Chapter 1 Introduction 2

To do so, we show that the base system extended with intersections, unions, recursive

types, and a natural notion of subtyping is type-safe, and the resulting type system

admits a type checking algorithm. The former follows from the usual type preservation

and progress theorems, which correspond to session fidelity and deadlock freedom in

the concurrent setting. We accomplish the latter by giving an algorithmic system and

showing its equivalence to the declarative one.

In the presence of a strong subtyping relation and transparent (i.e. non-generative) equire-

cursive types, intersections and unions turn out to be powerful enough to specify many

interesting communications behaviors, which we demonstrate with examples analogous to

those in functional languages [11, 9].

The rest of the thesis is structured as follows. In chapter 2, we give a brief overview of prior

work on the correspondence between concurrent computation and linear sequent logic. We

introduce the base system and equirecursive types. Chapter 3 extends this system with a

natural notion of subtyping. In chapter 4, we add intersection and union types to the

system. This necessitates modifying the subtyping relation in order to admit distributivity

laws. We present the new subtyping relation and explore its properties. Chapter 5 presents

the algorithmic system, and finally, chapter 6 concludes with suggestions for future work.



Chapter 2

From Linear Logic to Session Types

2.1 Linear Propositions as Session Types

The key idea of linear logic is to treat logical propositions as resources: each must be

used exactly once. According to the Curry-Howard isomorphism for intuitionistic linear

logic, propositions are interpreted as session types, proofs as concurrent processes, and

cut elimination steps as communication [4, 18, 16]. For this correspondence, hypotheses

are labelled with channels (rather than with variables). We also assign a channel name

to the conclusion since processes are not evaluated like in a functional language but

are communicated with (along a channel). This gives us the following form for typing

judgments:

c1 : A1, . . . , cn : An ` P :: (c : A)

which should be interpreted as “P offers along the channel c the session A using channels

c1, . . . , cn (linearly) with the corresponding types”. We assume c1, . . . , cn and c are all

distinct.

Each process offers along a specific channel, and in the linear setting, each channel must

be used by exactly one process. Processes cannot rename channels, which means we can

treat channel names as unique process identifiers.

Working out the isomorphism further and assigning a session type to each linear proposition

gives the interpretation below. Note that types are interpreted from the perspective of

the process providing the type (the provider) rather than the process using it (the client).

3



Chapter 2 From Linear Logic to Session Types 4

A,B,C ::= 1 send end and terminate

| A⊗B send channel of type A and continue as B

| ⊕{labk : Ak}k∈I send labi and continue as Ai
| τ ∧B send value of type τ and continue as B

| A( B receive channel of type A and continue as B

| &{labk : Ak}k∈I receive labi and continue as Ai
| τ ⊃ B receive value of type τ and continue as B

1 corresponds to processes that offer no interesting behaviour. The types A⊗B and A( B

correspond to sending and receiving channel names respectively. ⊕{labk : Ak}k∈I is called
an internal choice, since the label is picked by the provider. Similarly, &{labk : Ak}k∈I is

an external choice since the choice is made by the client. In either case, I is a finite index

set, lab : I → Label is an injective function into the set of labels, and A : I → Type

is any function into types. The order of labels does not matter and each label must be

unique. Finally, τ ∧ B and τ ⊃ B type processes that send and receive values in some

underlying functional language. In this thesis, we will ignore these types and limit our

focus to the process calculus. The integration of a functional language is orthogonal and

can be found in [22].

2.2 Process Expressions

Within this framework, proof terms correspond to processes. For example, cut, written

c← Pc ; Qc, denotes a form of process composition where the client spawns off a helper

process (Pc) with which it can communicate from then on. The intuition is formalized in

the typing rule:
Ψ ` Pc :: (c : A) Ψ′, c : A ` Qc :: (d : D)

Ψ,Ψ′ ` c← Pc ; Qc :: (d : D)
cut

The rest of the process expressions are summarized below, with the sending construct

followed by the matching receiving construct. Discussion of other typing rules is given in

section 2.2.2.

P,Q,R ::= x← Px ; Qx cut (spawn)

| c← d id (forward)

| close c | wait c ; P 1

| send c (y ← Py) ; Q | x← recv c ; Rx A⊗B, A( B

| c.lab ; P | case c of {labk → Qk}k∈i &{labk : Ak}k∈I , ⊕{labk : Ak}k∈I
| send c M ; Q | n← recv c ; Rn A ∧B, A ⊃ B
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Note that cut, send, and recv bind the spawned, sent, and received channel names, which

means these are identified up to alpha conversion. We denote the usual capture avoiding

simultaneous substitution of channels c̄ for x̄ in P by [c̄/x̄]P where c̄ and x̄ are ordered

sequences of equal length.

2.2.1 An Example Process: Process Level Naturals

Let us consider an example program to get more intuition about the system. We will

use process level natural numbers, Nat, as a running example. Examples are given using

concrete syntax, which closely follows the abstract syntax presented above with some

syntactic sugar. Briefly, channel names start with a ‘. Type declarations have the form

type <type name> = <definition> and process declarations have the form <offered

channel> <- <process name> = <definition>. Process declarations can refer to the

offered channel, and both kinds of declarations can use the declared name recursively.1

All declarations are considered mutually recursive. We define send c d ; P = send c (x←
x ← d) ; P and c ← P = x ← P ; (c ← x) as syntactic sugar. If a process declaration

has a type A1 ( A2 ( . . . ( An ( B, then it can be applied to n channels of the

corresponding types, which is translated into a spawn followed by n sends. The full

grammar is given in appendix A.

With that out of the way, we can give our first example. First, we define the interface:

type Nat = +{zero : 1, succ : Nat}

The interface states that a process level natural number is an internal choice of either zero

or a successor of another natural. Next, we define two simple processes that implement

the interface:

z : Nat

‘c <- z =

‘c.zero;

c lose ‘c

s : Nat -o Nat

‘c <- s ‘d =

‘c.succ;

‘c <- ‘d

z simply sends the label zero along the channel ‘c (which it provides) and terminates,

whereas s send the label succ and delegates to ‘d. Here is a slightly more complicated

example that uses recursion:

double : Nat -o Nat

‘c <- double ‘d =

case ‘d of
zero -> ‘c.zero; wait ‘d; c lose ‘c

1Recursive types and processes are introduced formally in section 2.3.
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succ -> ‘c.succ; ‘c.succ; ‘c <- double ‘d

2.2.2 Type Assignment for Processes

The typing rules for other constructs are derived from linear logic by decorating derivations

with proof terms. The rules are given in Figure 2.1. Note that we allow unused branches

case expressions for ⊕L and &R, which makes width subtyping easier (discussed in

chapter 3).

c : A ` d← c :: (d : A)
id

Ψ ` Pc :: (c : A) Ψ′, c : A ` Qc :: (d : D)

Ψ,Ψ′ ` c← Pc ; Qc :: (d : D)
cut

∅ ` close c :: (c : 1)
1R

Ψ ` P :: (d : A)

Ψ, c : 1 ` wait c ; P :: (d : A)
1L

Ψ ` P :: (d : A) Ψ′ ` Q :: (c : B)

Ψ,Ψ′ ` send c (d← Pd) ; Q :: (c : A⊗B)
⊗R

Ψ, d : A, c : B ` Pd :: (e : E)

Ψ, c : A⊗B ` d← recv c ; Pd :: (e : E)
⊗L

i ∈ I Ψ ` P :: (c : Ai)

Ψ ` c.labi ; P :: (c : ⊕{labk : Ak}k∈I)
⊕R

I ⊆ J Ψ, c : Ak ` Pk :: (d : D) for k ∈ I
Ψ, c : ⊕{labk : Ak}k∈I ` case c of {labk → Pk}k∈J :: (d : D)

⊕L

Ψ, d : A ` Pd :: (c : B)

Ψ ` d← recv c ; Pd :: (c : A( B)
( R

Ψ ` Pd :: (d : A) Ψ′, c : B ` Q :: (e : E)

Ψ,Ψ′, c : A( B ` send c (d← Pd) ; Q :: (e : E)
( L

J ⊆ I Ψ ` Pk :: (c : Ak) for k ∈ J
Ψ ` case c of {labk → Pk}k∈I :: (c : &{labk : Ak}k∈J)

&R

i ∈ I Ψ, c : Ai ` P :: (d : D)

Ψ, c : &{labk : Ak}k∈I ` c.labi ; P :: (d : D)
&L

Figure 2.1: Type assignment to processes

As usual, we identify bound channels up to alpha conversion. Free channels are subject

to consistent renaming across a sequent by substitution.
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2.3 Recursion

In this section, we introduce equirecursive types and recursive processes which are central

in many applications of session types.

2.3.1 Recursive Types

We extend the language of types with variables and a new construct, µt.At, representing

recursive types. A recursive type µt.A is identified with its unfolding [µt.A/t]A, which

means there are no explicit term level coercions (e.g. unfold and fold) to go between

them. This is the reason they are called equirecursive as opposed to isorecursive where

term level coercions would witness the isomorphism. Equirecursive types tend to make

type-checking and meta-theory harder, however, they reduce communication and make

more sense in a concurrent setting where behavior is more important than term structure.

In the style of [1], we interpret recursive types as finite representations of potentially

infinite µ-free types through repeated unfolding. For example, the type µt.1( t stands

for 1 ( (1 ( (1 ( (· · · ))) and µt.t⊗ t represents (· · · ) ⊗ (· · · ). This interpretation,

however, breaks down when we have types such as µt.t which only unfold to themselves

(therefore, no amount of unfolding can remove the µ). To forbid such types, we introduce

the standard global syntactic restriction called contractiveness [21, 12] and only consider

contractive types from then on.

2.3.1.1 Contractiveness

Intuitively, a recursive type µt.A is contractive if all occurrences of t in A are under a

structural (i.e. not µ) type constructor. For example, µt.1( t and µt.t⊗ t are contractive
whereas µt.t and µt.µu.t are not.
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We formalize contractiveness using the notion of unguarded variables [21]. Unguarded

variables of a type A, denoted UV (A), are defined inductively as follows:

UV (1) = ∅

UV (A⊗B) = ∅

UV (⊕{labk : Ak}k∈I) = ∅

UV (A( B) = ∅

UV (&{labk : Ak}k∈I) = ∅

UV (t) = {t}

UV (µt.A) = UV (A) \ {t}

A type is then said to be contractive if every occurrence of µt.A satisfies t 6∈ UV (A) as

formalized in Figure 2.2.

1 contractive
A contractive B contractive

A⊗B contractive

Ax contractive for x ∈ I
⊕{labk : Ak}k∈I contractive

A contractive B contractive
A( B contractive

Ax contractive for x ∈ I
&{labk : Ak}k∈I contractive

t 6∈ UV (A) A contractive

µt.A contractive

Figure 2.2: Contractiveness

Contractiveness ensures that repeated unfolding will terminate with a structural type in

a finite number of steps. This is required for soundness of the theory, and comes up often

in many inductive arguments we will present. Usually, the property that gets smaller

will be the size of a type, which is defined to be the number of unfoldings we need to do

before we hit a structural type:

size (1) = 0

size (A⊗B) = 0

size (⊕{labk : Ak}k∈I) = 0

size (A( B) = 0

size (&{labk : Ak}k∈I) = 0

size (t) = ⊥

size (µt.A) = 1 + size (A)
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Note that size is well defined for contractive types since we can never hit the variable

case. It is of course finite since types are finite.

2.3.1.2 Well-formed Types

Extending the language of types with variables means not every syntactically valid type

makes sense. For example, the type µt.u is meaningless since u is not bound anywhere.

Fortunately, all such types can be eliminated by requiring all types to be closed. That

is, the set of free variables of a type should be empty. Just like contractiveness, we will

assume all types we consider are closed and will not explicitly restate this assumption.

Every operation we need on types preserves this property2.

2.3.2 Recursive Processes

We introduce a new form of process expression which we write rec p(c̄).Pp which are

modeled after the corecursive processes of [23]. Here, p is a process variable that intuitively

stands for the whole expression and c̄ is an ordered list of channel names that is used to

parametrize the expression over channel names. We use the notation P c̄ for parameter

instantiation. Parametrization is useful in case we want to rename the provided or used

channels. For instance, we will often want to spawn a copy of the overall expression:

rec p(c).d← p d ; Pd where Pd is some process that consumes d and offers along c. The

typing rules limit specialization to recursive processes and process variables.

We also have to extend the typing context to keep track of process variables. Note that

we cannot simply add this information to the existing context since that contexts tracks

channel names which are different from processes. In addition, the channel context is

linear, but there is no reason to limit recursive occurrences of a process to exactly one

place. We write the new judgment as Ψ `η P :: (c : A), where η stores the typing context

for process variables. As usual, we assume variable names in η are made unique through

alpha renaming. Recursive processes are typed using the rules in Figure 2.3. These are

the only rules that modify the process variable context, all other rules simply pass it up

unchanged.

Note that in the definition of η′, [ȳ/z̄]Ψ ` p(ȳ) :: ([ȳ/z̄]c : A) is not a typing judgment.

Instead, η should be thought of as nothing more than a map from variable names to four

tuples containing parameter names, typing context, provided channel name, and provided

type. It is necessary to store the context since channels are linear and channel types

evolve over time, but the context needs to be the same at every occurrence of p.
2We will only unfold a µ which clearly results in a closed type given a closed type. We never take a µ

apart. We will break down other types such as A⊗B, but that cannot result in an open type.
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Ψ `η′ [z̄/ȳ]P :: (c : A) η′ = η, [ȳ/z̄]Ψ ` p(ȳ) :: ([ȳ/z̄]c : A)

Ψ `η (rec p(ȳ).P ) z̄ :: (c : A)
µ

Ψ ` p(ȳ) :: (c : A) ∈ η
[z̄/ȳ]Ψ `η p z̄ :: ([z̄/ȳ]c : A)

var

Figure 2.3: Type assignment for recursive processes

2.3.3 Type Equality

We mentioned that we will identify a recursive type µt.A with its unfolding [µt.A/t]A,

but we have not yet formally introduced this to the theory. As things currently stand, it

is not possible to type any process that requires an unfold. We address that problem by

defining an equality relation A ≡ B between types and introduce the conversion rules

given in Figure 2.4.

Ψ `η P :: (c : A′) A′ ≡ A
Ψ `η P :: (c : A)

≡ R
Ψ, c : A′ `η P :: (d : B) A ≡ A′

Ψ, c : A `η P :: (d : B)
≡ L

Figure 2.4: Type conversion

Possibly the more interesting part is our definition of ≡. Intuitively, it is the unfolding

rule µt.A ≡ [µt.A/t]A along with a congruence rule for each structural type constructor.

However, we define ≡ coinductively since a coinductive definition can safely equate more

types [21] and since we are more interested in behaviour than structure as mentioned

before. The rules for ≡ are given in Figure 2.5. We use double lines to mean rules should

be interpreted coinductively.

1 ≡ 1
≡ 1

A ≡ A′ B ≡ B′
A⊗B ≡ A′ ⊗B′

≡ ⊗
Ax ≡ A′x for x ∈ I

⊕{labk : Ak}k∈I ≡ ⊕{labk : A′k}k∈I
≡ ⊕

A′ ≡ A B ≡ B′
A( B ≡ A′( B′

≡(
Ax ≡ A′x for x ∈ I

&{labk : Ak}k∈I ≡ &{labk : A′k}k∈I
≡ &

A ≡ [µt.B/t]B

A ≡ µt.B ≡ µR
[µt.A/t]A ≡ B
µt.A ≡ B ≡ µL

Figure 2.5: Equality of types

We expect type equality to be an equivalence relation between types (i.e. it should be

reflexive, symmetric, and transitive). In a coinductive setting, however, adding symmetry
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and/or transitivity explicitly will make all types equal! We have thus carefully constructed

the rules so that these properties are admissible as proven next.

Theorem 2.1. ≡ is an equivalence:

• A ≡ A for all types A.

• A ≡ B implies B ≡ A for all types A,B.

• A ≡ B and B ≡ C implies A ≡ C for all types A,B,C.

Proof. Reflexivity is by coinduction on A. Symmetry follow from a simple coinduction

on the derivation of type equality using the symmetric rules for ≡ µR and ≡ µL. For

transitivity, we use a lexicographic combination of coinduction on the two equality

derivations and induction on size (B).

The details are omitted since the proofs are quite standard (except for the use of

coinduction, which does not change the structure of the proof). In addition, we will soon

replace equality with subtyping in chapter 3.

2.4 Process Configurations

So far, we have only considered processes in isolation. In a concurrent setting, we need

to be able to talk about multiple processes and the interactions between them. In this

section, we introduce process configurations, which are simply sets of processes where

each process is labelled with the channel along which it provides. We use the notation

procc(P ) for labelling the process P , and require that all labels in a configuration are

distinct. That is, a process configuration {procc1(P1), . . . , proccn(Pn)} is valid if and

only if c1, . . . , cn are all distinct. Note that we do not require channels that occur within

Pi to be distinct, this is handled by the typing judgment given next.

Definition 2.2 (Process Configuration). Ω = {procc1(P1), . . . , proccn(Pn)} is called a

process configuration if c1, . . . , cn are all distinct.

With the above restriction, each process offers along a specific channel and each channel

is offered by a unique process. Since channels are linear resources in our system, they

must be used by exactly one process. In addition, we do not allow cyclic dependence,

which imposes an implicit forest (set of trees) structure on a process configuration where

each node has one outgoing edge (including root nodes which have “dangling” edges

disconnected on one side) and any number of incoming edges that correspond to the
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|= ∅ :: ∅
config0

Ψ `∅ P :: (c : A) |= Ω :: Ψ

|= Ω, procc(P ) :: (c : A)
config1

|= Ωi :: (ci : Ai) for i ∈ {1, . . . , n} i > 1

|= Ω1, . . . ,Ωn :: (c1 : A1, . . . , cn : An)
confign

Figure 2.6: Configuration typing

channels the process uses. This observation suggests the typing rules in Figure 2.6, which

mimic the structure of a multi-way tree, for a process configuration.

This definition is well-founded since the size of the configuration gets strictly smaller. The

rules only expose the types of the roots since this is the only information we need when

typing the next level. At the top level, we will usually start with one process with type

1, which will spawn off providers as needed using cut. Since we do not care about the

specific type at the top level, we say a process configuration Ω is well typed if |= Ω :: Ψ

for some Ψ. Finally, note that the rules do not allow cyclic uses of channel names, and

that the left of the turnstile is empty since configurations must be closed.

Definition 2.3 (Domain of a Configuration). We define

dom {procc1(P1), . . . , proccn(Pn)} = {c1, . . . , cn}.

Type equality interacts with configuration typing as expected:

Lemma 2.4. If |= Ω :: Ψ and Ψ ≡ Ψ′ then |= Ω :: Ψ′.

Proof. Case for multiple channels follows immediately from the induction hypotheses.

Single channel case is by inversion and ≡ R.

The following inversion lemma will come in handy:

Lemma 2.5 (Inversion of Configuration Typing). If |= Ω :: Ψ and procc(P ) ∈ Ω,

then there exist Ω1,Ω2 such that Ω = Ω1,Ω2, procc(P ) and |= Ω2, procc(P ) :: (c : A)

for some A. In addition, for any Ω′2 and P ′ such that |= Ω′2, procc(P
′) :: (c : A),

|= Ω1,Ω
′
2, procc(P

′) :: Ψ.

Proof. By a straightforward induction on the typing derivation.
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2.5 Dynamic Semantics

2.5.1 Reduction

We express reduction rules using substructural operational semantics [20] which are based

on multiset rewriting [5]. For example, the rule for 1 can be written as:

procc(close c)⊗ procd(wait c ; P )( {procd(P )}.

Note that the rule is written using linear connectives, however, these should not be

confused with connectives we used for types. Instead, a rule of the form A1⊗ . . .⊗An(
{B1 ⊗ . . .⊗Bm} means we can replace the resources A1, . . . , An with B1, . . . , Bm. The

curly braces {. . .} indicates a monad which essentially forces the rules to be interpreted

as a multiset rewriting rule. {∃x.F} generates a fresh a and proceeds with [a/x]F , while

c = d performs a global identification of c and d in the configuration. The rest of the

rules are given in Figure 2.7.

id : procc(c← d)( {c = d}
cut : procc(x← Px ; Qx)( {∃a.proca(Pa)⊗ procc(Qa)}
one : procc(close c)⊗ procd(wait c ; P )( {procd(P )}

tensor : procc(send c (x← Px) ; Q)⊗ proce(x← recv c ; Rx)

( {∃a.proca(Pa)⊗ procc(Q)⊗ proce(Ra)}
internal : procc(c.labi ; P )⊗ procd(case c of {labk → Qk}k∈I)⊗ i ∈ I

( {procc(P )⊗ procd(Qi)}
lolli : procc(x← recv c ; Px)⊗ procd(send c (x← Qx) ; R)

( {∃a.procc(Pa)⊗ proca(Qa)⊗ procd(R)}
external : procc(case c of {labk → Pk}k∈I)⊗ procd(c.labi ; Q)⊗ i ∈ I

( {procc(Pi)⊗ procd(Q)}
rec : procc((rec p(ȳ).P ) z̄)( {procc([rec p(ȳ).P/p][z̄/ȳ]P )}

Figure 2.7: Reduction rules for process configurations

We say that Ω reduces to or steps to Ω′ if one application of the above rules transforms

Ω into Ω′, and write Ω −→ Ω′. We denote the reflexive transitive closure of −→ by −→∗.

An important observation about reductions in typed configurations is that they are

constrained to one subtree, where the tree structure is implicit in the typing judgment as

discussed in section 2.4. This observation leads to the following framing rule.
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Definition 2.6 (Root of Reduction). We say that channel c is the root of Ω −→ Ω′ if

procc(P ) ∈ Ω is rewritten by the reduction, and either it is the only process to the left of

( (rules id, cut, rec), or it is the client.

Lemma 2.7 (Framing). If |= Ω :: Ψ and Ω −→ Ω′ then there exist Ω1,Ω2,Ω
′
2 such that

Ω = (Ω1,Ω2), Ω′ = (Ω1,Ω
′
2), Ω2 −→ Ω′2, and |= Ω2 :: (c : A) where c is the root of

Ω −→ Ω′. In addition, if |= Ω′2 :: (c : A), then |= Ω′ :: Ψ.

Proof. Assume |= Ω :: Ψ and Ω −→ Ω′ with root c. We proceed by induction on |= Ω :: Ψ.

• For the single channel case, assume Ψ = d : A. If d = c, then we pick Ω1 = ∅, Ω2 = Ω,

and Ω′2 = Ω′. The result follows immediately. Otherwise, we know procc(P ) ∈ Ω

was not part of the reduction, so we can apply the induction hypothesis. We add

procc(P ) to the Ω1 we get from the induction hypothesis.

• For the multiple channel case, assume Ψ = d1 : A1, . . . , dn : An, Ω = Ω1, . . . ,Ωn,

and |= Ωi :: (di : Ai). We know the reduction must work on only one of the Ωi, so

we apply the induction hypothesis on that portion of the context. We add the rest

to Ω1.

2.5.2 Progress

In a conventional functional language, the progress theorem states that a well-typed

expression either is a value or it takes a reduction step. We do not have values in a process

calculus, but there is a corresponding notion we call being poised. Intuitively, a process

is poised if it is waiting on its client. We introduce a new judgment procc(P ) poised

capturing this notion and define it in Figure 2.8.

procc(close c) poised procc(send c (d← Pd) ; Q) poised

procc(x← recv c ; Qx) poised procc(c.labi ; P ) poised

procc(case c of {labk → Qk}k∈I) poised

Figure 2.8: Poised processes

We say that a process configuration Ω is poised if every process in Ω is poised. We will

need the following inversion lemma about well-typed poised processes to handle type

equality:
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Lemma 2.8 (Inversion of Process Typing). If Ψ `∅ P :: (c : A) and procc(P ) poised,

then:

• If A ≡ 1 then P = close c.

• If A ≡ A1 ⊗A2 then P = send c (d← Qd) ; P ′.

• If A ≡ ⊕{labk : Ak}k∈I then P = c.labx ; P ′ where x ∈ I.

• If A ≡ A1( A2 then P = d← recv c ; P ′.

• If A ≡ &{labk : Ak}k∈I then P = case c of {labk → P ′k}k∈J where I ⊆ J .

Proof. The proof is by induction on the derivation of Ψ `∅ P :: (c : A) where Ψ and A

are free.

Case id, cut,1L,⊗L,⊕L,( L,&L, µ : Impossible since P is poised.

Case 1R,⊗R,⊕R,( R,&R : If the rule matches the expected type (e.g. A ≡ 1 and the

rule is 1R), then P has the expected form and we are done. Otherwise, we use

inversion on the type equality judgment to show that the case is impossible.

Case ≡ L : Follows immediately from the induction hypothesis.

Case ≡ R : Follows from the induction hypothesis and the fact that ≡ is transitive

(theorem 2.1).

We are now ready to state the progress theorem.

Theorem 2.9 (Progress). If |= Ω :: Ψ then either

1. Ω −→ Ω′ for some Ω′, or

2. Ω is poised.

Proof. The proof is by induction on configuration typing followed by a nested induction

on the typing derivation in the single channel case.

• The case for multiple channels is simpler, so we will do that first. Assume Ω =

Ω1, . . . ,Ωn. By the induction hypothesis, either Ωi is poised or it takes a step

(where i ∈ {1, . . . , n}). If any Ωi takes a step then Ω takes a step. Otherwise, all

Ωi are poised, so Ω is poised.
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• For the single channel case, we know Ω = Ω′, procc(P ). By inversion, Ψ0 `∅ P ::

(c : A) and |= Ω′ :: Ψ0. By the induction hypothesis, either Ω′ takes a step, in which

case Ω takes a step and we are done, or Ω′ is poised. Assume Ω′ is poised.

Define P(Ψ′ `∅ P :: (c : A′)) := if |= Ω′ :: Ψ′ then either procc(P ) is poised or Ω

can take a step. We proceed by induction on the typing derivation.

Case id : P has the form c← d and Ω steps by id.

Case cut : P has the form d← Qd ; P ′d and Ω steps by cut.

Case 1R,⊗R,⊕R,( R,&R : procc(P ) is poised.

Case 1L,⊗L,⊕L,( L,&L : The proofs for all these cases follow the same structure,

so we will only present 1L. We know P = wait d ; P ′ for some P ′ and d : 1 ∈ Ψ′.

By inversion on |= Ω′ :: Ψ′, we get Ψ′′ `∅ Q :: (d : 1) and procd(Q) ∈ Ω′ for

some Ψ′′ and Q. procd(Q) is poised since Ω′ is poised by the outer induction

hypothesis, so lemma 2.8 gives Q = close d. Thus, Ω steps by one.

Case µ : P has the form (rec t(ȳ).P ′) z̄ and Ω steps by rec.

Case ≡ R : Follows immediately by the induction hypothesis.

Case ≡ L : Ψ′ = Ψ′′, d : D and Ψ′′, d : D′ `∅ P :: (c : A′) for some D′ where

D ≡ D′. We then know Ψ′ ≡ Ψ′′, d : D′, thus, the result follows from

lemma 2.4 and the induction hypothesis.

Finally, we get either procc(P ) poised or Ω steps from P(Ψ0 `∅ P :: (c : A)) and

|= Ω′ :: Ψ0. In the former case, Ω is poised since Ω′ is poised from before, and in

the latter case we are immediately done.

2.5.3 Type Preservation

Preservation is a bit more tedious to prove.

Theorem 2.10 (Preservation). If |= Ω :: Ψ and Ω −→ Ω′ then |= Ω′ :: Ψ.

Proof. By lemma 2.7, it suffices to consider the subtree which types the root of reduction.

So, assume Ω1 −→ Ω2 and |= Ω1 :: (c : A) where c is the root of Ω1 −→ Ω2. We need to

show |= Ω2 :: (c : A).

The proof is by simultaneous case analysis on Ω1 −→ Ω2 and induction on the typing

derivation of the root process, followed by induction on the typing derivation of the

provider in cases where there is communication. We need induction rather than simple
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inversion due to ≡ R and ≡ L, which change types on the right and the left (respectively)

without exposing the structure of the process.

By inversion, Ω1 = (Ωc
1, procc(P )), Ψ `∅ P :: (c : A), and |= Ωc

1 :: Ψ. Define

P(Ψc `∅ P :: (c : A′)) := if |= Ωc
1 :: Ψc then |= Ω2 :: (c : A′). We proceed by induc-

tion.

• P
(
d : A′ `∅ c← d :: (c : A′)

id
)

:

Then, Ω2 = [c/d]Ωc
1. Note that c 6∈ dom (Ωc

1) (since well-formed contexts do not

have duplicate channel labels), so |= Ωc
1 :: (d : A′) implies |= Ω2 :: (c : A′) by

substitution.

• P
(D : Ψc `∅ P ′d :: (d : D) E : Ψ′c, d : D `∅ c :: (Qd : A′)

Ψc,Ψ
′
c `∅ d← P ′d ; Qd :: (c : A′)

cut
)

:

Then, Ω2 = Ωc
1, proca(P

′
a), procc(Qa) where a is fresh. By inversion on |= Ωc

1 ::

(Ψc,Ψ
′
c), there are Ω1

1,Ω
2
1 such that Ωc

1 = (Ω1
1,Ω

2
1), |= Ω1

1 :: Ψc and |= Ω2
1 :: Ψ′c.

Applying config1 on D and |= Ω1
1 :: Ψc gives |= Ω1

1, proca(P
′
a) :: (a : D) (through

suitable substitution). Then, |= Ω2
1,Ω

1
1, proca(P

′
a) :: (Ψ′c, a : D) by confign. Fi-

nally, E and config1 implies |= Ω2 :: (c : A′).

• 1R,⊗R,⊕R,( R,&R : Impossible since procc(P ) is the client.

• 1L,⊗L,⊕L,( L,&L : In all cases, Ψc = Ψ′c, d : D for some D. Inversion on

|= Ωc
1 :: Ψc gives Ωc

1 = Ωc′
1 ,Ω

d
1, procd(Q) such that Ψ′ `∅ Q :: (d : D), |= Ωd

1 :: Ψ′,

and |= Ωc′
1 :: Ψ′c.

Define Q(Ψd `∅ Q :: (d : D′)) := if |= Ωd
1 :: Ψd and D′ ≡ D then |= Ω2 :: (c : A′).

Note that Q(Ψ′ `∅ Q :: (d : D)) will give the final result once we prove Q, which
we do by induction.

– Q
(
∅ `∅ close d :: (d : 1)

1R
)
, P
(

D : Ψ′c `∅ P ′ :: (c : A′)

Ψ′c, d : 1 `∅ wait d ; P ′ :: (c : A′)
1L

)
:

Then, Ω2 = Ωc′
1 ,Ω

d
1, procc(P

′) = Ωc′
1 , procc(P

′) (last equality is by inversion

on |= Ωd
1 :: ∅). config1 on |= Ωc′

1 :: Ψ′c and D gives the desired result.

– Q
(D : Ψd `∅ Re :: (e : D′1) E : Ψ′d `∅ Q′ :: (d : D′2)

Ψd,Ψ
′
d `∅ send d (e← Re) ; Q′ :: (d : D′1 ⊗D′2)

⊗R
)
,

P
(

F : Ψ′c, x : D1, d : D2 `∅ P ′x :: (c : A′)

Ψ′c, d : D1 ⊗D2 `∅ x← recv d ; P ′x :: (c : A′)
⊗L

)
:

Then Ω2 = Ωc′
1 ,Ω

d
1, proca(Ra), procd(Q

′), procc(P
′
a) where a is fresh. Inver-

sion on D′1 ⊗D′2 ≡ D1 ⊗D2 gives D′1 ≡ D1 and D′2 ≡ D2. There are Ω1
1,Ω

2
1

such that |= Ω1
1 :: Ψd and |= Ω2

1 :: Ψ′d by inversion on |= Ωd
1 :: (Ψd,Ψ

′
d).

config1 on |= Ω1
1 :: Ψd and D with ≡ R gives |= Ω1

1, proca(Ra) :: (a : D1).

Similarly, config1 on |= Ω2
1 :: Ψ′d and E with ≡ R gives |= Ω2

1, procd(Q
′) :: (d :
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D2). Finally, config1 using the previous two derivations, |= Ωc′
1 :: Ψ′c, and F

with gives the desired result.

– ⊕R,( R,&R : Similar to above.

– Q
(
D : Ψd `∅ Q :: (d : D′′) E : D′′ ≡ D′

Ψd `∅ Q :: (d : D′)
≡ R

)
:

D′′ ≡ D by transitivity of ≡ (theorem 2.1), so we can immediately apply the

induction hypothesis on D.

– Q
(
D : Ψd, e : E′ `∅ Q :: (d : D′) E : E ≡ E′

Ψd, e : E `∅ Q :: (d : D′)
≡ R

)
:

Ψd, e : E ≡ Ψd, e : E′ using E , so |= Ωd
1 :: (Ψd, e : E′) by lemma 2.4. Thus, we

can apply the induction hypothesis on D, which gives the desired result.

– id, cut,1L,⊗L,⊕L,( L,&R, µ : Not applicable since we know the form of Q

by the outer induction and inversion over Ω1 −→ Ω2.

• P
(
D : Ψc `∅ P :: (c : A′′)

Ψc `∅ P :: (c : A′)
µ

)
:

Follows from a suitable substitution lemma for process variables. We omit the

details since it is quite standard.

• P
(
D : Ψc `∅ P :: (c : A′′) E : A′′ ≡ A′

Ψc `∅ P :: (c : A′)
≡ R

)
:

Induction hypothesis on D gives |= Ω2 :: (c : A′′). The result follows from lemma 2.4

using E .

• P
(
D : Ψc, d : D′ `∅ P :: (c : A′) E : D ≡ D′

Ψc, d : D `∅ P :: (c : A′)
≡ L

)
:

D ≡ D′ implies Ψ, d : D ≡ Ψ, d : D′ by definition. Lemma 2.4 gives |= Ωc
1 ::

(Ψ, d : D′), which means we can apply the induction hypothesis on D to get the

desired result.

Left out cases are impossible since Ω1 −→ Ω2 and the structure of the root process must

match up. Finally, P(Ψ `∅ P :: (c : A)) gives the desired result.
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Subtyping

Subtyping is a binary relation between types which captures the notion of being more

specific or carrying more information. We say that a type A is a subtype of B if a

process offering the type A can safely be used in any context where we expect a process

offering the type B. We write A ≤ B to mean A is a subtype of B. According to this

interpretation, for example, natural numbers would be a subtype of reals since every

natural number is also a real number. Depending on the type system and the precise

definitions of these types, this may or may not turn out to be the case. Of course, we are

interested in processes not algebra, so this example is for intuition only.

The notion of session subtyping we use is closely modeled on that of Gay and Hole

[12], whose system has width and depth subtyping for n-ary choices, which are natural

for record-like structures. Subtyping also doubles as a convenient way of identifying a

recursive type and its unfolding, thus, subsuming and generalizing the type equality we

introduced before. In a refinement system, subtyping is especially important since it is

used to propagate refinements and erase them as necessary (when interfacing legacy code

for example). This last point is deferred to section 4.3 since we are still introducing the

base system.

As usual, we introduce subtyping to term typing using what are called subsumption rules,

which are presented in Figure 3.1. The right rule says that if a process provides a type

A′, it can also be seen as providing a (less specific) supertype A. Dually, the left rule

says that if a process can properly handle a type A′, then it does not hurt to make the

type more specific.

With that in mind, we can now talk about the specifics of the actual subtyping relation.

19
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Ψ `η P :: (c : A′) A′ ≤ A
Ψ `η P :: (c : A)

SubR
Ψ, c : A′ ` P :: (d : B) A ≤ A′

Ψ, c : A `η P :: (d : B)
SubL

Figure 3.1: Subsumption rules

3.1 Choice

The first form of subtyping we have is width subtyping for internal and external choices,

which is similar to width subtyping for record calculi. The idea of width subtyping is

simple: whenever a process offers a set of options, we can use it in a context that requires

a subset of those options since we can safely ignore the ones we do not care about (external

choice), and similarly, whenever we are prepared to handle a set branches, we are prepared

to handle a subset of those branches (internal choice). This suggest the following subtyping

rules for external and internal choice respectively: &{labk : Ak}k∈I ≤ &{labk : Ak}k∈J
whenever J ⊆ I, and ⊕{labk : Ak}k∈I ≤ ⊕{labk : Ak}k∈J whenever I ⊆ J .

The next natural step is to carry this (and any other forms of subtyping we may have)

out recursively, that is, to allow the Ak to be replaced by subtypes. This is sometimes

called depth subtyping and yields the rules in Figure 3.2. The rules are coinductive due

to the same reasons the rules for ≡ are coinductive (refer to section 2.3.3).

I ⊆ J Ak ≤ A′k for k ∈ I
⊕{labk : Ak}k∈I ≤ ⊕{labk : A′k}k∈J

≤ ⊕
J ⊆ I Ak ≤ A′k for k ∈ J

&{labk : Ak}k∈I ≤ &{labk : A′k}k∈J
≤ &

Figure 3.2: Subtyping internal and external choices

Internal and external choices are the main tools we use to define data types, which makes

width and depth subtyping is especially important for our refinement system since they

allow removing branches altogether and constraining the remaining ones. Combined with

recursive subtyping, this will let us define interesting behavioral properties.

3.2 Recursive Types

Subtyping would not be very useful if we did not push it through recursive types. A

basic notion of recursive subtyping turns out to be not that much more complicated than

recursive type equality.1 Just as we considered two recursive types equivalent whenever

their infinite unfoldings were equivalent (refer to section 2.3.1), we will consider a recursive
1Subtyping in the presence of intersections and unions turns out to be more complicated, but that

comes later in section 4.3.
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type to be a subtype of another if their infinite unfoldings have this property. The rules

are given in Figure 3.3.

A ≤ [µt.B/t]B

A ≤ µt.B ≤ µR
[µt.A/t]A ≤ B
µt.A ≤ B ≤ µL

Figure 3.3: Subtyping recursive types

Another advantage of handling subtyping properly is that it subsumes type equivalence

since we can define A ≡ B if and only if A ≤ B and B ≤ A. This makes type equivalence

a derived notion rather than a primitive one, which simplifies the theory. In fact, type

equality will not ever come up in the theory since the only reason for introducing it was

to identify a recursive type and its unfolding, which will now be handled by subtyping.

3.3 Structural Types and the Complete System

Subtyping is not directly related to the other constructs in the type system, so the rest of

the rules are for congruence only. The resulting system is presented in Figure 3.4. Note

that( is contravariant on the left as is usual for function-like constructs.

1 ≤ 1
≤ 1

A ≤ A′ B ≤ B′

A⊗B ≤ A′ ⊗B′
≤ ⊗

I ⊆ J Ak ≤ A′k for k ∈ J
⊕{labk : Ak}k∈I ≤ ⊕{labk : A′k}k∈J

≤ ⊕

A′ ≤ A B ≤ B′

A( B ≤ A′( B′
≤(

J ⊆ I Ak ≤ A′k for k ∈ J
&{labk : Ak}k∈I ≤ &{labk : A′k}k∈J

≤ &

A ≤ [µt.B/t]B

A ≤ µt.B ≤ µR
[µt.A/t]A ≤ B
µt.A ≤ B ≤ µL

Figure 3.4: Subtyping for the base system

Subtyping extends to contexts in the obvious way: Ψ ≤ Ψ′ if and only if Ψ = (c1 :

A1, . . . , cn : An), Ψ′ = (c1 : A′1, . . . , cn : A′n), and Ai ≤ A′i for i ∈ {1, . . . , n}.

3.4 Metatheory

Just like we did for type equivalence, we expect the subtyping relation to satisfy certain

properties. Mainly, it should be a preorder, that is, it should satisfy reflexivity and

transitivity. The following theorem shows these are admissible:
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Theorem 3.1. ≤ is a preorder:

• A ≤ A for all types A.

• A ≤ B and B ≤ C implies A ≤ C for all types A,B,C.

Proof. Follows from a simple coinduction for reflexivity. For transitivity, we use a

lexicographic combination of coinduction on the two subtyping derivations and induction

on size (B). We omit details here since the proof is standard and since we will be switching

to a different subtyping relation in section 4.3.

3.4.1 Type Safety

We did not add new forms of processes, so reduction and the notion of being poised is

the same as in section 2.5. We have, however, replaced type equality with a more general

notion of subtyping, so we need to revisit the progress and preservation theorems.

The proofs of progress and preservation theorems are slight modifications of the ones we

presented in section 2.5: we simply replace every occurrence of ≡ with ≤. It should be

straightforward to modify the process inversion lemma (lemma 2.8) which is used in the

proof of the progress theorem, and the two cases related to ≡, so we omit details here.



Chapter 4

Intersection and Union Types as

Refinements

Recall our definition of process level naturals Nat. One can imagine cases where we would

like to know more about the exact nature of the natural. For example, if we are using a

natural to track the size of a list, we might want to ensure it is non-zero. Sometimes, it

might be relevant to track whether we have an even or an odd number. The system we

have described so far turns out to be strong enough to describe all these refinements as

illustrated below:

type Nat = +{zero : 1, succ : Nat}

type Pos = +{succ : Nat}

type Even = +{zero : 1, succ : Odd}

type Odd = +{succ : Even}

It is easy to see that Pos, Even, Odd are all subtypes of Nat. We run into a problem

when we try to implement the behavior described by these types, however. Consider

the s function, for example, which satisfies many properties: Nat( Nat, Pos( Pos,

Even ( Odd, Odd ( Even etc. Subtyping can be used to combine some of these (e.g.

Nat( Pos for Nat( Nat and Pos( Pos) but it is not expressive enough to combine

all properties. An elegant solution is to add intersections to the type system.

4.1 Intersection Types

We denote the intersection of two types A and B as AuB. A process offers an intersection

type if its behavior satisfies both types simultaneously. Using intersections, we can assign

23
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the programs introduced in section 2.2 types specifying all behavioral properties we care

about:

z : Nat and Even

s : (Nat -o Nat) and (Even -o Odd) and (Odd -o Even)

double : (Nat -o Nat) and (Nat -o Even)

Note that as is usual with intersections, multiple types are assigned to the same process.

Put differently, we cannot use two different processes or specify two different behaviors to

satisfy the different branches of an intersection. This leads to the following typing rule:

Ψ `η P :: (c : A) Ψ `η P :: (c : B)

Ψ `η P :: (c : A uB)
uR

When we are using a channel on the left that offers an intersection of two types, we know

it has to satisfy both properties so we get to pick the one we want:

Ψ, c : A `η P :: (d : D)

Ψ, c : A uB `η P :: (d : D)
uL1

Ψ, c : B `η P :: (d : D)

Ψ, c : A uB `η P :: (d : D)
uL2

The standard subtyping rules for intersections are given below. It should be noted that

uL1 and uL2 become redundant with the addition of ≤ uL1 and ≤ uL2 since they are

derivable by an application of subsumption on the left using these rules.

A ≤ B1 A ≤ B2

A ≤ B1 uB2
≤ uR

A1 ≤ B
A1 uA2 ≤ B

≤ uL1
A2 ≤ B

A1 uA2 ≤ B
≤ uL2

Since we are extending the language of types, we need to revisit contractiveness. Since they

do not have a corresponding expression level construct, intersections are not considered

structural types. Thus, they propagate unguarded variables:

UV (A uB) = UV (A) ∪UV (B)

size (A uB) = 1 + size (A) + size (B)

4.2 Union Types

Unions are the dual of intersections and correspond to processes that satisfy one or

the other property, and are written A t B. We add unions because they are a natural

extension to a type system with intersections. We will also see how n-ary internal choice

can be interpreted as the union of singleton choices. Without them, our interpretation
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would only be half-complete since we could interpret external choice (with intersections)

but not internal choice.

Being dual to intersections, the typing rules for unions mirror the typing rules for

intersections: we have two right rules and one left rule, and this time the right rules are

derivable from subtyping. The rules are given below:

Ψ `η P :: (c : A)

Ψ `η P :: (c : A tB)
tR1

Ψ `η P :: (c : B)

Ψ `η P :: (c : A tB)
tR2

Ψ, c : A `η P :: (d : D) Ψ, c : B `η P :: (d : D)

Ψ, c : A tB `η P :: (d : D)
tL

The right rules state the process has to offer either the left type or the right type

respectively. The left rule says we need to be prepared to handle either type. It is

important to point out that we restore a long-lost symmetry for functional languages.

The natural left rule we give here for unions (natural since it is dual to the right rule for

intersection) has been shown to be problematic in functional languages [2]. One solution

limits the left rule to expressions in evaluation position [10]. The straightforward left rule

turns out to be already sound here due to our use of the linear sequent calculus.

The usual subtyping rules are given below. Dual to intersections, the right typing rules

become redundant with the addition of the subtyping rules.

A ≤ B1

A ≤ B1 tB2
≤ tR1

A ≤ B2

A ≤ B1 tB2
≤ tR1

A1 ≤ B A2 ≤ B
A1 tA2 ≤ B

≤ tL

Unions allow us to describe some interesting properties. For example, we can show that

every natural is either even or odd:

iso : Nat -o (Even or Odd)

‘c <- iso ‘d =

case ‘d of
zero -> wait ‘d; ‘c.zero; c lose ‘c

succ -> ‘c.succ; ‘e <- iso ‘d; ‘c <- ‘e

We have to unfold one level since our system cannot prove Nat ≤ Even tOdd. A more

involved example is given in appendix B.
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Definitions of unguarded variables and size are extended similarly:

UV (A tB) = UV (A) ∪UV (B)

size (A tB) = 1 + size (A) + size (B)

4.3 Subtyping Revisited

Every refinement system requires a notion of subtyping to be practical since subtyping is

needed in order to implicitly propagate refinements. For example, if we have a process

providing Pos, we should be able to use it in a context that requires Nat since Pos is a more

specific type. Otherwise, we would require explicit coercions to erase extra information

which can easily become cumbersome, especially when we have multiple refinements on

a type and we need a specific subset. However, addition of non-structural types such

as intersection and union complicates subtyping since these types do not depend on or

reveal the structure of the processes they describe. More specifically, property types raise

questions about the soundness of completeness of the subtyping relation.

Subtyping is said to be sound if whenever A ≤ B, using processes of type A in contexts

expecting a process of type B does not break type safety. This is usually requires (1) all

terms of types A and B to have the same structure, and (2) the set of possible behaviors

of terms with type A to be a subset of the set of possible behaviors of terms with type

B. Some systems, mainly the ones that use coercive subtyping [17], may not necessarily

require condition (1). We will in this system though, since we do not want term level

constructs (whether explicit or implicit) that witness convertibility. Subtyping is complete

if every time it is safe to use A for B, we have A ≤ B.

Soundness of subtyping is necessary for type safety, so we have no choice but to make

sure this is the case. On the other hand, type safety will hold even in the presence of

incompleteness. In fact, most practical systems give up on completeness since it usually

turns out to be very hard to design a simple and complete subtyping relation. This will

be the case for our system, though, we do try to find a middle ground between simplicity

and completeness in order to recover some rules we believe are important in practice.

4.3.1 Distributivity Laws

The subtyping relation we give in chapter 3 and in the previous sections is not complete

with respect to, say, the ideal semantics of types [24, 7]. This is because intersections and

unions admit many distributivity-like rules over structural types and over each other. For
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example, it is not hard to see that (A1⊗A2)u (B1⊗B2) ≤ (A1 uB1)⊗ (A2 uB2) would

be sound using a propositional reading: if a process sends out a channel that satisfies A1

then acts as B1, and the sent channel also satisfies A2 in addition to the result satisfying

B2, then the channel satisfies both A1 and A2 and the result satisfies both B1 and B2.

However, this judgment is not admissible in the given system: the only applicable rules

are ≤ uL1 and ≤ uL2, both of which get stuck because we lose half the information we

require for the rest of the derivation. The situation is perhaps exacerbated by the fact

that we can prove subtyping in the other direction, so these types are supposed to be

equivalent. This means depending on where these types occur, we may fail to prove one

side of a symmetric relation!

The fix is not as simple as adding this rule as an extra axiom. For one, it is not trivial to

rewrite this rule in order to preserve admissibility of transitivity. More importantly, this

is not the only rule we would have to add. Figure 4.1 gives just some of the many sound

rules that are not admissible.

(A1 ⊗A2) u (B1 ⊗B2) ≤ (A1 uB1)⊗ (A2 uB2)

⊕ {labk : Ak}k∈I u ⊕{labk : Bk}k∈J ≤ ⊕{labk : Ak uBk}k∈I∩J

(A( B1) u (A( B2) ≤ A( (B1 uB2)

&{labk : Ak}k∈I u&{labk : Bk}k∈J ≤ &{labk : Ak}k∈I ∪&{labk : Bk}k∈J (I ∩ J = ∅)

(A1 tA2)⊗B ≤ (A1 ⊗B) t (A2 ⊗B)

⊕ {labk : Ak}k∈I ∪ ⊕{labk : Bk}k∈J ≤ ⊕{labk : Ak}k∈I t ⊕{labk : Bk}k∈J (I ∩ J = ∅)

(A1( B) u (A2( B) ≤ (A1 tA2)( B

&{labk : Ak tBk}k∈I∩J ≤ &{labk : Ak}k∈I t&{labk : Bk}k∈J

(A1 tB) u (A2 tB) ≤ (A1 uA2) tB

(A1 tA2) uB ≤ (A1 uB) t (A2 uB)

Figure 4.1: Sound but inadmissible subtyping rules

This list is certainly not complete, and there are almost as many rules in this list as

there are in the original system. Clearly, a blind axiomatic approach is not practical

and a more general treatment is in order. There has been some work on incorporating

intersections and unions in a conventional type system that preserves completeness under

certain conditions. The closest and most complete system we found was from Damm

[7, 6]. In [7], he encodes types as regular tree expressions, and reformulates subtyping as

regular tree grammar containment which was shown to be decidable. This results in a



Chapter 4 Intersection and Union Types as Refinements 28

system that is sound and complete when all types are infinite (but 1 is a finite type). He

later extends this work [6] such that the system is sound in the presence of finite types

(although not necessarily complete).

Their system is very close to what we would like to accomplish, however, we think it is

too complicated for our purposes as it requires familiarity with ideal semantics of types

(which in turn is based on domain theory and the theory metric spaces) and regular tree

grammars. Even if a similar approach could be made to work, we find such systems to be

fragile in the face of future extensions. We would rather work with a simple and robust

subtyping relation that does not necessitate rethinking every detail with every extension,

so we make a design decision: we give up full completeness and instead design a system

that admits the rules we are likely to encounter in practice.

In the next section, we present a system that we think achieves the right tradeoff between

simplicity and completeness.

4.3.2 Subtyping as Sequent Calculus with Multiple Conclusions

Since we are interested in intersections and unions, we would like to at least admit

distributivity of intersection over union and vice versa. That is, we would like the

following equalities to hold:

(A1 tB) u (A2 tB) ≡ (A1 uA2) tB

(A1 tA2) uB ≡ (A1 uB) t (A2 uB)

Going from right to left turns out to be easy, but we quickly run into a problem if we

try to do the other direction: whether we break down the union on the right or the

intersection on the left, we always lose half the information we need to carry out the rest

of the proof.1

Our solution is doing the obvious: if the problem is losing half the information, well, we

should just keep it around. This suggests a system where the single type on the left and

the type on right are replaced with (multi)sets of types. That is, instead of the judgment

A ≤ B, we use a judgment of the form A1, . . . , An ⇒ B1, . . . , Bn, where the left of ⇒ is

interpreted as a conjunction (intersection) and the right is interpreted as a disjunction

(union). This results in a system reminiscent of classical sequent calculus with multiple

conclusions [13, 14]. However, our system is slightly different since we are working with

coinductive rules.
1This issue does not come up in the other direction since intersection right and union left rules are

invertible, that is, they preserve all information.
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The new system is presented Figure 4.2. We use α and β to denote multisets of types.

The intersection left rules are combined into one rule that keeps both branches around.

The same is done with union right rules. Intersection right and union left rules split into

two derivations, one for each branch, but keep the rest of the types unchanged. We can

unfold a recursive type on the left or on the right. When we choose to apply a structural

rule, we have to pick exactly one type on the left and one on the right with the same

structure. This results is a system that does not admit distributivity of intersections

and unions over structural types. We conjecture that matching multiple types will give

distributivity over structural types, though the intricacies that arise has lead us to leave

this to future work.

α⇒ A1, β α⇒ A2, β

α⇒ A1 uA2, β
⇒ uR

α,A1, A2 ⇒ β

α,A1 uA2 ⇒ β
⇒ uL

α⇒ A1, A2, β

α⇒ A1 tA2, β
⇒ tR

α,A1 ⇒ β α,A2 ⇒ β

α,A1 tA2 ⇒ β
⇒ tL

α,1⇒ 1, β
⇒ 1

A⇒ A′ B ⇒ B′

α,A⊗B ⇒ A′ ⊗B′, β
⇒ ⊗

I ⊆ J Ak ⇒ A′k for k ∈ I
α,⊕{labk : Ak}k∈I ⇒ ⊕{labk : A′k}k∈J , β

⇒ ⊕ A′ ⇒ A B ⇒ B′

α,A( B ⇒ A′( B′, β
⇒(

J ⊆ I Ak ⇒ A′k for k ∈ J
α,&{labk : Ak}k∈I ⇒ &{labk : A′k}k∈J , β

⇒ &

α⇒ [µt.A/t]A, β

α⇒ µt.A, β
⇒ µR

α, [µt.A/t]A⇒ β

α, µt.A⇒ β
⇒ µL

Figure 4.2: Subtyping with multiple hypothesis and conclusions

4.3.3 Properties of Subtyping

Remark 4.1. Note that the new system in fact admits the desired distributivity rules. That

is, we have (A1tB)u (A2tB)⇒ (A1uA2)tB and (A1tA2)uB ⇒ (A1uB)t (A2uB).
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Proof. We give the following derivation for the former:

id(A1)
A1 ⇒ A1
weak

A1, A2 tB ⇒ A1, B

....
B,A2 tB ⇒ A1, B

A1 tB,A2 tB ⇒ A1, B
⇒ tL

....
A1 tB,A2 tB ⇒ A2, B

A1 tB,A2 tB ⇒ A1 uA2, B
⇒ uR

(A1 tB) u (A2 tB)⇒ A1 uA2, B
⇒ uL

(A1 tB) u (A2 tB)⇒ (A1 uA2) tB
⇒ tR

where weak and id are the weakening and identity lemmas proven later in this section.

The proof of the latter relation is similar.

Intuitively, these proofs go thorough since ⇒ uL and ⇒ tR do not lose information.

Formally, this means these rules are invertible:

Lemma 4.2 (Invertibility). The following are admissible:

(⇒ uR) α⇒ A1 uA2, β ⇐⇒ α⇒ A1, β and α⇒ A2, β.

(⇒ uL) α,A1 uA2 ⇒ β ⇐⇒ α,A1, A2 ⇒ β.

(⇒ tR) α⇒ A1 tA2, β ⇐⇒ α⇒ A1, A2, β.

(⇒ tL) α,A1 tA2 ⇒ β ⇐⇒ α,A1 ⇒ β and α,A2 ⇒ β.

(⇒ µR) α⇒ µt.At, β ⇐⇒ α⇒ [µt.At/t]At, β.

(⇒ µL) α, µt.At ⇒ β ⇐⇒ α, [µt.At/t]At ⇒ β.

Proof. Right to left follows by an immediate application of ⇒ uR, ⇒ uL, ⇒ tR, ⇒ tL,
⇒ µR, or ⇒ tL respectively.

For the other direction, we proceed with coinduction on the derivation of the subtyping

judgment. Call the type we care about A.

• If the proof is by a structural rule (⇒ 1, ⇒ ⊗, ⇒ ⊕, ⇒(, or ⇒ &), it must be

on types in α and β, so we use the same rule with the same premises to prove the

result.

• If the proof is by the relevant rule on A, then the premises are exactly what we

need.

• Otherwise, the proof deconstructs a type in α or β using a property rule without

changing A. Using the same rule and the coinduction hypotheses gives the result.
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One might think the cases for ⇒ uL and ⇒ tR can be strengthened. After all, if

α⇒ A1 t A2 then it should be the case that either α⇒ A1 or α⇒ A2. However, this

intuition is not true in general. Consider how the proof for A1 t A2 ⇒ A1 t A2 would

proceed: we would apply ⇒ tL which splits the derivation in half, and then depending

on the branch, we would either pick A1 or A2 on the right. Luckily, it turns out that we

can recover this result if all types on the left are structural.

Define A structural if A has a structural type construct at the top level (i.e. not µ, u
or t). We say α structural or Ψ structural if A structural for all A ∈ α or A ∈ Ψ,

respectively. Then,

Lemma 4.3 (Extended Invertibility). The following are admissible:

• If α⇒ β and α structural, then
∨
A∈β α⇒ A.

• If α⇒ β and β structural, then
∨
A∈αA⇒ β.

Proof. We will only show the first case; the other is symmetric. We proceed by induction

on sizeβ and case analysis on D : α⇒ β.

• D is by⇒ uR. The induction hypotheses give
∨
A∈B1,β′ α⇒ A and

∨
A∈B2,β′ α⇒ A

where β = B1 u B2, β
′. If α ⇒ B1 and α ⇒ B2 then α ⇒ B1 u B2 by ⇒ uR.

Otherwise,
∨
A∈β′ α⇒ A.

• D is by ⇒ tR. The induction hypothesis gives
∨
A∈B1,B2,β′ α⇒ A where β =

B1tB2, β
′. If α⇒ B1 or α⇒ B2, then α⇒ B1, B2 by weak, and thus α⇒ B1tB2

by ⇒ B1 tB2. Otherwise, we have
∨
A∈β′ α⇒ A.

• D is by ⇒ µR. The induction hypothesis gives
∨
A∈[µt.Bt/t]Bt,β′ α⇒ A where β =

µt.Bt, β
′. If α ⇒ µt.BttBt, then the result follows form µR. Otherwise, it is

immediate.

• D is by by a structural rule. The rule picks one type in β and the rest are irrelevant,

so the result is immediate.

The other cases are impossible since α structural.

Corollary 4.4. We have the following:

• If α⇒ A1 tA2 and α structural, then either α⇒ A1 or α⇒ A2.



Chapter 4 Intersection and Union Types as Refinements 32

• If A1 tA2 ⇒ β and β structural, then either A1 ⇒ β or A2 ⇒ β.

Proof. Follows trivially from inversion and lemma 4.3.

Next, we verify that usual properties expected of logical systems (such as weakening and

cut admissibility) are valid for our system.

Lemma 4.5 (Weakening). If α⇒ β, then α, α′ ⇒ β, β′ for all α′, β′.

Proof. Follows from a trivial coinduction on the derivation of α⇒ β since all rules are

parametric on the unused types.

Theorem 4.6 (Admissibility of Identity). α⇒ α for all non-empty α.

Proof. We will prove a more general statement which says α′, A⇒ A, β′ for any A,α′, β′.

Since α in question is non-empty, we can instantiate A to be any type in α and pick

α′ = β′ to be the rest of the list.

We proceed by coinduction on the structure of A.

• If A has a structural construct at the top level, we apply the corresponding rule for

⇒ and satisfy the premises using the coinduction hypotheses.

• If A is a µ, we unfold on both sides and use the coinduction hypothesis.

• If A is a u or a t, we unfold on both sides. The derivation splits into two cases,

which we satisfy using the coinduction hypotheses.

Theorem 4.7 (Admissibility of Cut). If α⇒ A, β and α,A⇒ β, then α⇒ β.

Proof. Assume D : α⇒ A, β and E : α,A⇒ β. We will use a lexicographic combination

of coinduction on D and E and induction on sizeA to construct a proof of F : α⇒ β:

• If D is by a structural rule not using A, then the same rule with the same premises

proves F . We make no use of E .

• Similarly, if E is by a structural rule not using A, then the same rule with the same

premises proves F . We do not need D in this case.
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• D is by a non-structural rule not using A. We will only show the case for ⇒ uL
since other cases are similar. We have:

D =
D′ : α′, B1, B2 ⇒ A, β

α′, B1 uB2 ⇒ A, β
⇒ uL

Lemma 4.2 on E gives E ′ : α′, B1, B2, A⇒ β. Then, we can construct F as follows:

cut(D′, E ′, A)
α′, B1, B2 ⇒ β

α⇒ β
⇒ uL

• E is by a non-structural rule not using A. Similar to the previous case.

• D and E are by the same structural rule on A. We will only present the case for

⇒(. We have:

D =
D1 : A1 ⇒ B1 D2 : B2 ⇒ A2

α′, B1( B2 ⇒ A1( A2, β
⇒(

E =
E1 : C1 ⇒ A1 E2 : A2 ⇒ C2

α,A1( A2 ⇒ C1( C2, β
′ ⇒(

We construct F as follows:

trans(E1,D1, A1)
C1 ⇒ B1

trans(D2, E2, A2)
B2 ⇒ C2

α′, B1( B2 ⇒ C1( C2, β
′ ⇒(

where trans is a specific use of cut defined in corollary 4.8.

• D and E are by symmetric non-structural rules on A. This turns out to be the

most tricky case and the only case where we need the induction. Case for µR/µL

follows from an immediate application of the coinduction hypothesis (note that

size (A) shrinks by one). Cases for uR/uL and tR/tL are similar, so we will show

the former. We have:

D =
D1 : α⇒ A1, β D2 : α⇒ A2, β

α⇒ A1 uA2, β
⇒ uR E =

E ′ : α,A1, A2 ⇒ β

α,A1 uA2 ⇒ β
⇒ uL

We then define F as follows:

D1
α⇒ A1, β

D2
weak

α,A1 ⇒ A2, β
E ′

α,A1, A2 ⇒ β

α,A1 ⇒ β
cut

α⇒ β
cut
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Note that the size of the type is inductively smaller than size (A) in every (co)inductive

application of cut.

Of course, we do not have multisets of types at the top level. The final subtyping relation

is thus defined by passing singleton sets to the relation: “A is a subtype of B” , A⇒ B.

It makes sense to ask whether the relation on singleton sets is a preorder, which easily

follows from what we have proved:

Corollary 4.8. ⇒ is a preorder:

• A⇒ A for all types A.

• A⇒ B and B ⇒ C implies A⇒ C for all types A,B,C.

Proof. Reflexivity is a special case of identity (theorem 4.6). Transitivity follows from cut

admissibility using weakening: assume A ⇒ B and B ⇒ C. By weakening, A ⇒ B,C

and A,B ⇒ C. This now matches the form required by theorem 4.7.

4.3.4 Completeness of ⇒ with Respect to ≤

Whenever one changes the structure of a judgment, it is a good idea to establish a

relation between the new and the old judgments. Usually, the relation established is

equivalence, where the new system is shown to be sound and complete with respect to

the old. Completeness shows that the new system is not any weaker: everything derivable

in the old system is also derivable in the new. Soundness is the converse: everything

derivable in the new system was already derivable in the old. Soundness clearly fails here

since ⇒ admits distributivity among property types whereas ≤ does not. In fact, this

was precisely the reason for switching over! We still would like to make sure that we are

not losing and relations, which is witnessed by the following theorem:

Theorem 4.9 (Soundness of ⇒). If A ≤ B then A⇒ B.

Proof. By a straightforward coinduction on the derivation of A ≤ B. In each case, we

apply the corresponding rule for ⇒, using lemma 4.5 to weaken the premises of ⇒ uL
and ⇒ tR as necessary.
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4.4 Encoding n-ary Choice Using Intersections and Unions

In this section, we show that that intersections and unions are useful beyond their

refinement interpretation, and help us understand external and internal choices better.

We do this by reinterpreting n-ary choices using intersections and unions, in a similar

manner to Reynolds’ reinterpretation of records using intersections [19]. Take external

choice, for instance. A comparison between the typing rules for intersections and external

choice reveal striking similarities. The only difference, in fact, is that internal choice has

process level constructs whereas intersections are implicit.

Consider the special case of binary external choice: &{inl : A, inr : B}. This type says:

I will act as A if you send me inl and I will act as B if you send me inr. We know the

and can be interpreted as an intersection, and either side can be thought of as a singleton

external choice. A similar argument can be given for internal choice and unions. This

gives us the following redefinitions of n-ary external and internal choices:

&{labk : Ak}k∈I ,
l

k∈I
&{labk : Ak}

⊕ {labk : Ak}k∈I ,
⊔
k∈I
⊕{labk : Ak}

It can be verified that these definitions satisfy the typing and subtyping rules for external

and internal choices, so they are faithful to the meaning of original constructs. At this

point, we could remove n-ary external and internal choices from the system in favor

of singleton choices. These definitions do not indicate what happens when I is empty,

however. We could either insist this be not the case (since there are not many useful

programs that make use of empty choices), or we could add empty choices along with

singleton choices.

An advantage of singleton choices is that they simplify the typing rules:

Ψ `η P :: (c : A)

Ψ `η c.lab ; P :: (c : ⊕{lab : A}) ⊕R

i ∈ I Ψ, c : A `η Pi :: (d : D)

Ψ, c : ⊕{labi : A} `η case c of {labk → Pk}k∈I :: (d : D)
⊕L

i ∈ I Ψ `η Pi :: (c : A)

Ψ `η case c of {labk → Pk}k∈I :: (c : &{labi : A}) &R

Ψ, c : A `η P :: (d : D)

Ψ, c : &{lab : A} `η c.lab ; P :: (d : D)
&L
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and the subtyping rules:

A ≤ A′

⊕{lab : A} ≤ ⊕{lab : A′}
≤ ⊕

A ≤ A′

&{lab : A} ≤ &{lab : A′} ≤ &

Another advantage is we recover some form of distributivity of intersections and unions

over choices. In particular, the following relations hold simply by definition (modulo the

commutativity and associativity of intersection and union):

&{labk : Ak}k∈I u&{labk : Bk}k∈J ≤ &{labk : Ak}k∈I ∪&{labk : Bk}k∈J (I ∩ J = ∅)

⊕ {labk : Ak}k∈I ∪ ⊕{labk : Bk}k∈J ≤ ⊕{labk : Ak}k∈I t ⊕{labk : Bk}k∈J (I ∩ J = ∅)

Unfortunately, some properties still do not hold since we do not have distributivity over

structural types. For example, we cannot derive the following in general:

⊕{labk : Ak}k∈I u ⊕{labk : Bk}k∈J ≤ ⊕{labk : Ak uBk}k∈I∩J

&{labk : Ak tBk}k∈I∩J ≤ &{labk : Ak}k∈I t&{labk : Bk}k∈J

Still, this encoding simplifies the type system and establishes the connection between

intersections and external choice, and unions and internal choice.

4.5 Type Safety

It turns out type preservation fails with the current formulation of the system. The

problem stems from the fact that cut, ⊗R, and( L split the context into two, however,

these splits do not have to be unique. In the base system, the split is only done once so

type safety holds, but uR and tL rules branch into two derivations, each of which could

split the context differently. This sort of dependence does not work for configuration

typing which must have a tree structure (where the children of a process correspond to

all the channels used by that process) irrespective of the types of the processes. That is,

we need to know exactly which channels go into typing the newly spawned process when

we step a cutting or a sending process, and this choice cannot depend on the type.

We will suggest a fix to this problem, but first, let us look at a concrete example which

shows preservation fails. The outline of the disproof is as follows. First, we give a process

which offers an intersection and a typing derivation where the context is split in two

different ways for the two branches of the intersection. Next, we put this process in a

configuration and show that it is well typed. Finally, we take a valid step, and argue why

the new configuration cannot be well-typed.
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Example 4.1. We will show d1 : 1, d2 : 1 `∅ P :: (c : A) where

A = (Al ⊗Ar) u (Ar ⊗Al) Al = &{inl : 1} Ar = &{inr : 1}

P = send c (x← P ′x) ; P ′c

P ′x = case x of {inl→ wait d1 ; close x, inr→ wait d2 ; close x}

The typing derivation is given below:

∅ `∅ close x :: (x : 1)
1R

d1 : 1 `∅ wait d1 ; close x :: (x : 1)
1L

d1 : 1 `∅ P ′x :: (x : Al)
&R

...
d2 : 1 `∅ P ′c :: (c : Ar)

d1 : 1, d2 : 1 `∅ P :: (c : Al ⊗Ar)
⊗R · · ·

d1 : 1, d2 : 1 `∅ P :: (c : A)
uR

(cases left out are similar). It is important to note that for the left branch, d1 is used to

type P ′x and d2 is used to type P ′c, whereas for the right branch, the opposite is true.

Next, it is easy to check c : A `∅ Q :: (e : (Al ⊗Ar ⊗ 1) u (Ar ⊗Al ⊗ 1)) where

Q = y ← recv c ; send e y ; send e c ; close e.

Now, consider Ω = procd1(close d1), procd2(close d2), procc(P ), proce(Q), which is easily

typed given the derivations above. procc(P ) and proce(Q) can take a step together using

tensor, but the new configuration is untypeable. The process spawned off by procc(P )

needs both d1 and d2, so does the process procc(P ) steps into. There is no way to split

the context properly at the configuration level, thus preservation fails.2

One way to restore type safety is to ensure there is always a unique split. One might be

mislead to think this should already be the case: whenever we have Ψ `η P :: (c : A), it

must be the case that freeP \ {c} ⊆ dom Ψ since the context must provide all unbound

variables, and dom Ψ ⊆ freeP \ {c} since all channels must be used in a linear context.

That is, we must have dom Ψ = freeP \ {c} which would uniquely determine the context

based on the free channels of a process. However, this fails for three reasons:

1. Empty choices &{} and ⊕{} might be well-typed under any context since &R and ⊕L
have no premises. For example, we have Ψ, d : ⊕{} `∅ case d of {} :: (c : A) for any

Ψ and A by an application of ⊕L. In this case, we might have freeP \ {c} ( dom Ψ.
2Rigorously proving that the new configuration is untypeable is not easy in the declarative system,

so we only present an intuitive argument. The proof could be formalized using the system given in
section 5.2 if necessary.
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2. We allow unused branches in case expressions, which might contain any channel

name, so it may not be the case that dom Ψ ( freeP \ {c}. This is what we

exploited in the counterexample above.

3. Recursive processes may be well-typed in any context. For example:

Ψ ` p(∅) :: (c : A) ∈ {Ψ ` p(∅) :: (c : A)}
Ψ `η p ∅ :: (c : A)

var
η = Ψ ` p(∅) :: (c : A)

Ψ `∅ (rec p(∅).(p ∅)) ∅ :: (c : A)
µ

holds for any Ψ and A.

We introduce the following (reasonable) restrictions to restore this property:

1. Empty choices are disallowed. Whenever we see &{labk : Ak}k∈I or ⊕{labk : Ak}k∈I ,
we check that I 6= ∅.

2. All branches of a case expressions must have the same set of free channels. That

is, if we have case c of {labk → Pk}k∈I , then we must have freePi = freePj for

i, j ∈ I.

3. In the rule µ, which types Ψ `η (rec p(ȳ).P ) z̄ :: (c : A), we add the premise

z̄ = dom Ψ ∪ {c} so that all relevant channels are explicitly mentioned in the term.

With these restrictions, we get the following regularity theorem:

Theorem 4.10 (Regularity of Contexts). If Ψ `η P :: (c : A) and for all Ψ′ ` p(ȳ) :: (d :

D) ∈ η, ȳ = dom Ψ′ ∪ {d}, then freeP = dom Ψ ∪ {c}.

Proof. By induction on the typing derivation. The only nontrivial cases are &R, ⊕L, µ,
and var.

Case &R,⊕L : Restriction (1) ensures there is at least one premise on which we can

apply the induction hypothesis. Due to restriction (2), it does not matter which

branch is typed. The result then follows easily.

Case µ : We know P = (rec p(ȳ).P ′) z̄ and Ψ `η′ [z̄/ȳ]P :: (c : A), where η′ =

η, [ȳ/z̄]Ψ ` p(ȳ) :: ([ȳ/z̄]c : A). In addition, restriction (3) gives z̄ = dom Ψ ∪ {c}.
Since freeP = (freeP ′ \ ȳ) ∪ z̄, it suffices to show freeP ′ = ȳ.

Before we can apply the induction hypothesis, we need to show ȳ = dom ([ȳ/z̄]Ψ)∪
{[ȳ/z̄]c}, which follows easily from the fact that z̄ = dom Ψ ∪ {c}. The induction

hypothesis then gives free ([z̄/ȳ]P ′) = dom Ψ ∪ {c}. Finally, we have:

freeP ′ = free ([ȳ/z̄][z̄/ȳ]P ′) = dom ([ȳ/z̄]Ψ) ∪ {[ȳ/z̄]c} = ȳ
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from before, as required.

Case var : We have P = p z̄, Ψ = [z̄/ȳ]Ψ′, and c = [z̄/ȳ]d where Ψ′ ` p(ȳ) :: (d : A) ∈ η.
By assumption, ȳ = dom Ψ′ ∪ {d}, so

freeP = z̄ = [z̄/ȳ]ȳ = dom ([z̄/ȳ]Ψ′) ∪ {[z̄/ȳ]d} = free Ψ ∪ {c}

as desired.

Corollary 4.11 (Regularity of Contexts). If Ψ `∅ P :: (c : A) then dom Ψ = freeP \ {c}.

Proof. Follows trivially from theorem 4.10. The premises are immediately satisfied since

the context for process variables is empty, and we can subtract {c} from both sides to

get the final result.

It should be worthwhile to talk about why the restrictions above are reasonable. Exam-

ple 4.1 shows that restriction (2) or a similar restriction on case expression is necessary

for type preservation to hold. In addition, it is reasonable to expect all branches of a case

expression to be related in a certain way. We could force the programmer to provide a

type for all branches even when they are irrelevant, but this would make programming

cumbersome and disallow the encoding in section 4.4. Restriction (2) is much easier to

satisfy, and it makes sense in a linear setting.

Restrictions (1) and (3) are necessary for theorem 4.10, but we conjecture they are not

needed for type preservation. Without (1) and (3), context splits become nondeterministic,

so different branches of a derivation could split the context in different ways but not in

an essential way.3 However, the analysis becomes unnecessarily complicated when we

remove these restrictions. &{} has no right rule and ⊕{} has no left rule, so these types

will not come up in real programs. Restriction (3) amounts to labeling each recursive

process with the channels in the context, which should always be known. The channels

that the programmer chose not to rename can always be filled in by a compiler, so (3)

poses no practical concerns.

Corollary 4.11 is sufficient to prove type safety. However, applicability of subsumption at

any point in the presence of intersections and unions complicates the proof too much.

Instead, we will first introduce the better behaved algorithmic system and establish safety

for that system. The equivalence of the algorithmic system to the declarative will then

imply safety for the declarative system.
3For example, empty choices might be well-typed under any context. Thus, if they are typed under

two different contexts Ψ1 and Ψ2, they can also be typed under Ψ1 ∩Ψ2 or Ψ1 ∪Ψ2.
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An Algorithmic System

In this chapter, we prove that subtyping and type-checking are decidable by designing an

algorithm that takes in a (sub)typing judgment and produces true if and only if there is

a derivation. It turns out to be easy to convert the subtyping relation we presented in

Figure 4.2 into an algorithm. For type-checking, we have to design an algorithmic system

and prove it equivalent to the original. Then, the decidability of the new system will

imply decidability of the old.

5.1 Algorithmic Subtyping

The subtyping judgment we gave is already mostly algorithmic (a necessity of working

with coinductive rules), so we only have to tie a couple loose-ends. The first is deciding

which rule to pick when multiple are applicable. We apply ⇒ uR, ⇒ uL, ⇒ tR, ⇒ tL,
⇒ µR, ⇒ µL eagerly (in any order) since these are invertible (lemma 4.2). When we hit

all structural types (which will always be the case due to our contractiveness restriction,

though the proof of termination does not depend on this fact) we non-deterministically

pick a structural rule and continue.

Second, the coinductive nature of typing means we can (and often will) have infinite

derivations. We combat this by using a cyclicity check (similar to the one in [12]): we

maintain a context of previously seen subtyping comparisons and immediately terminate

with success if we ever compare the same pair of sets of types again. Every recursive

step corresponds to a rule, which ensures a productive derivation.1 For example, to show
1Assuming the conclusion and showing productivity corresponds to how coinductive proofs usually

proceed.

40
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µt.1( t⇒ µs.1( 1( s, we could have the following derivation:

. . . ` 1⇒ 1
⇒ 1

. . . ` 1⇒ 1
⇒ 1

( ` µt.1( t⇒ µs.1( 1( s
hyp

. . . ` 1( µt.1( t⇒ 1( µs.1( 1( s
⇒(

. . . ` µt.1( t⇒ 1( µs.1( 1( s
⇒ µL

. . . ` 1( µt.1( t⇒ 1( 1( µs.1( 1( s
⇒(

(µt.1( t⇒ µs.1( 1( s) ` 1( µt.1( t⇒ µs.1( 1( s
⇒ µR

∅ ` µt.1( t⇒ µs.1( 1( s
⇒ µL

The contexts are elided (written . . .) to save space, but they are always supersets of

µt.1( t ⇒ µs.1( 1( 1. hyp simply matches the goal with an assumption in the

context.

It is not hard to see that the algorithm is a correct decision procedure for the subtyping

system. If a subtyping judgment is derivable in the original system, it certainly is derivable

with the additional rule since all hyp can do is to terminate the derivation at a finite

depth. Conversely, we can always convert a proof that uses hyp into a coinductive (and

infinite) proof since we must have made progress between the introduction of a hypothesis

and its usage. We simply duplicate this partial derivation indefinitely.

Finally, we need to show that the algorithm always terminates. At every step, the context

grows by one element.2 Thus, termination comes down to finding a finite upper bound

on the size of the context. Assume we are trying to establish A ⇒ B. The only types

that can appear in the context are substructures of A and B (modulo unfolding) of which

there are finitely many. Since subtyping is defined on pairs, and each side of ⇒ is a

multiset rather than a single type, the maximum size increases exponentially, but still

stays finite. A more formal treatment can be found in [21].

5.2 Bidirectional Type-checking

Designing a syntax directed type checking algorithm is quite simple for the base system

where we only have structural types (no recursion or subtyping), since the form of the

process determines a unique applicable typing rule. The cut rule causes a small problem

since we do not have a type for the helper process to check against. This is solved by

adding type annotations in spawning processes so that the new form is c : A← Pc ; Qc.

We define JP K to be the function which erases these annotations.

In the extended system with subtyping and property types, type-checking is trickier for

two reasons: (1) subsumption can be applied anytime where one of the types in A ≤ B is
2If it does not, we must be adding an element that already exists, but then we should have applied

hyp.
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free, and (2) intersection left and union right rules lose information which means they

have to be applied non-deterministically. The latter issue is resolved by switching to a

multiset context multiple conclusion logic just like we did with subtyping. This makes

intersection left and union right rules invertible, so they can be applied eagerly.

The former problem is solved by bidirectional type-checking where we only check subtyping

at the identity rule and at recursive process variables (delegation). This relies on the

subformula property for the sequent calculus, excepting only the cut rule which is

annotated. The fact that we can delay subtyping in this way is formalized later in

lemma 5.10, when we prove the equivalence of the algorithmic system to the declarative

one.

Algorithmic typing rules for processes are given in Figure 5.1. The rules make use of the

following definitions:

Definition 5.1 (Cumulative Intersection and Union). For all non-empty α = A1, . . . , An,

define
d
α = A1 u . . . u An and

⊔
α = A1 t . . . t An. Even though we consider α

to be unordered, these operations are well-defined since u and t are associative and

commutative (with respect to the subtyping relation).

Similarly, for a context Ψ = c1 : α1, . . . , cn : αn, define
d

Ψ = c1 :
d
α1, . . . , cn :

d
αn

and
⊔

Ψ = c1 :
⊔
α1, . . . , cn :

⊔
αn.

Definition 5.2 (Subtyping of Contexts). For Ψ = c1 : α1, . . . , cn : αn and Ψ′ = c1 :

β1, . . . , cn : βn, we say Ψ⇒ Ψ′ whenever αi ⇒
d
βi for all 1 ≤ i ≤ n.

The rules uR, uL, tR, tL, µR and µL are applied eagerly as mentioned before. If and

when these rules are saturated3, we examine the structure of the process and non-

deterministically commit to a type. Whenever we need to split the context, we again try

all possible splits.4 At every step, either the process gets structurally smaller, or it stays

the same and the size of a type in the context or the provided type shrinks by 1. Thus,

the algorithm always terminates.

3size of the context or the provided type decreases by one after each application of these rules. Since
we only consider contractive types, size is finite and we must reach all structural types at some point.

4One might be tempted to think the correct split can be computed based on the free channels in the
components of P . Unfortunately, that approach does not always work since case statements might have
unused branches. These extra branches are never type-checked, so they could contain free occurrences of
any channel name.
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Ψ 
η P :: (c : A,α) Ψ 
η P :: (c : B,α)

Ψ 
η P :: (c : A uB,α)
uR

Ψ, c : (α,A,B) 
η P :: (d : β)

Ψ, c : (α,A uB) 
η P :: (d : β)
uL

Ψ 
η P :: (c : A,B, α)

Ψ 
η P :: (c : A tB,α)
tR

Ψ, c : (α,A) 
η P :: (d : β) Ψ, c : (α,B) 
η P :: (d : β)

Ψ, c : (α,A tB) 
η P :: (d : β)
tL

Ψ 
η P :: (c : [µt.A/t]A,α)

Ψ 
η P :: (c : µt.A, α)
µR

Ψ, c : (α, [µt.A/t]A) 
η P :: (d : β)

Ψ, c : (α, µt.A) 
η P :: (d : β)
µL

α⇒ β

c : α 
η d← c :: (d : β)
id

Ψ 
η Pc :: (c : A) Ψ′, c : A 
η Qc :: (d : α)

Ψ,Ψ′ 
η c : A← Pc ; Qc :: (d : α)
cut

∅ 
η close c :: (c : 1, α)
1R

Ψ 
η P :: (d : β)

Ψ, c : (α,1) 
η wait c ; P :: (d : β)
1L

Ψ 
η P :: (d : A) Ψ′ 
η Q :: (c : B)

Ψ,Ψ′ 
η send c (d← Pd) ; Q :: (c : A⊗B,α)
⊗R

Ψ, d : A, c : B 
η Pd :: (e : β)

Ψ, c : (α,A⊗B) 
η d← recv c ; Pd :: (e : β)
⊗L

i ∈ I Ψ 
η P :: (c : Ai)

Ψ 
η c.labi ; P :: (c : ⊕{labk : Ak}k∈I , α)
⊕R

I ⊆ J Ψ, c : Ak 
η Pk :: (d : β) for k ∈ I
Ψ, c : (α,⊕{labk : Ak}k∈I) 
η case c of {labk → Pk}k∈J :: (d : β)

⊕L

Ψ, d : A 
η Pd :: (c : B)

Ψ 
η d← recv c ; Pd :: (c : A( B,α)
( R

Ψ 
η Pd :: (d : A) Ψ′, c : B 
η Q :: (e : β)

Ψ,Ψ′, c : (α,A( B) 
η send c (d← Pd) ; Q :: (e : β)
( L

J ⊆ I Ψ 
η Pk :: (c : Ak) for k ∈ J
Ψ 
η case c of {labk → Pk}k∈I :: (c : &{labk : Ak}k∈J , α)

&R

i ∈ I Ψ, c : Ai 
η P :: (d : β)

Ψ, c : (α,&{labk : Ak}k∈I) 
η c.labi ; P :: (d : β)
&L

Ψ `η′ [z̄/ȳ]P :: (c : α) η′ = η, [ȳ/z̄]Ψ ` p(ȳ) :: ([ȳ/z̄]c : α)

Ψ 
η (rec p(ȳ).P ) z̄ :: (c : α)
µ

(Ψ ` p(ȳ) :: (c : α)) ∈ η Ψ′ ⇒ [z̄/ȳ]Ψ
⊔
α⇒ β

Ψ′ 
η p z̄ :: ([z̄/ȳ]c : β)
var

Figure 5.1: Algorithmic process typing
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5.3 Properties of Algorithmic Type-checking

We now explore the properties of the bidirectional system analogous to the ones we

proved for the multiset subtyping relation in section 4.3.3. First, we have the following

definitions:

Definition 5.3 (Operations on Comtexts). For all contexts Ψ and Ψ′, we have:

Ψ ∩Ψ′ = {c : Ψ(c) ∩Ψ′(c) | c ∈ dom Ψ ∩ dom Ψ′}

Ψ ∪Ψ′ = {c : Ψ(c),Ψ′(c) | c ∈ dom Ψ ∩ dom Ψ′}, (Ψ \ dom Ψ′), (Ψ′ \ dom Ψ)

Ψ ↑ c̄ = {c : Ψ(c) | c ∈ dom Ψ ∩ c̄}

where intersection and union of multisets is defined as usual.

Lemma 5.4 (Weakening). If Ψ 
η P :: (c : α), then Ψ ∪Ψ′ 
η P :: (C : α, α′) for all α′

and Ψ′ such that dom Ψ′ ⊆ dom Ψ.

Proof. By a simple induction on the typing derivation since all rules are parametric in

the unused types.

Lemma 5.5 (Invertibility). The following are admissible:

(uR) Ψ 
η P :: (c : A1 uA2, α) ⇐⇒ Ψ 
η P :: (c : A1, α) and Ψ 
η P :: (c : A2, α).

(uL) Ψ, d : α,A1 uA2 
η P :: (c : β) ⇐⇒ Ψ, d : α,A1, A2 
η P :: (c : β).

(tR) Ψ 
η P :: (c : A1 tA2, α) ⇐⇒ Ψ 
η P :: (c : A1, A2, α).

(tL) Ψ, d : α,A1 tA2 
η P :: (c : β) ⇐⇒ Ψ, d : α,A1 
η P :: (c : β) and Ψ, d : α,A2 
η

P :: (c : β).

(µR) Ψ 
η P :: (c : µt.A, α) ⇐⇒ Ψ 
η P :: (c : [µt.A/t]A,α).

(µL) Ψ, d : α, µt.A 
η P :: (c : β) ⇐⇒ Ψ, d : α, [µt.A/t]A 
η P :: (c : β).

Proof. Right to left is derivable by an application of uR, uL, tR,tL, µR, or µL respectively.

Forward direction is by induction on the typing derivation.

Just as it was the case for subtyping in lemma 4.3, we get a stronger inversion property

for uL and tR when all other types are structural. However, in addition to this restriction,

we need the process to be about to communicate along the channel whose type we are

inverting. The theorem is not true if the typing derivation can apply a structural rule on

a different channel.
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To express this more formally, we introduce a new judgement procc(P ) blocked on d,

which intuitively states P ’s next action will be along d. The formal definition is given in

Figure 5.2. Note that we can then say procc(P ) poised ⇐⇒ procc(P ) blocked on c.

procc(close c) blocked on c

c 6= d

procc(wait d ; Q) blocked on d

procc(send d (e← Pe) ; Q) blocked on d procc(x← recv d ; Qx) blocked on d

procc(d.labi ; P ) blocked on d procc(case d of {labk → Qk}k∈I) blocked on d

Figure 5.2: Blocking channel

We now have the following lemma.

Lemma 5.6 (Extended Invertibility). The following are admissible:

• If Ψ 
η P :: (c : α), Ψ structural, and procc(P ) poised, then
∨
A∈α Ψ 
η P :: (c : A).

• If Ψ, d : α 
η P :: (c : β), Ψ structural, β structural, and procc(P ) blocked on d,

then
∨
A∈α Ψ, d : A 
η P :: (c : β).

Proof. The proof is very similar to the proof of lemma 4.3 so we will not repeat it.

A special case of the above lemma gives the following:

Corollary 5.7. The following are admissible:

• If Ψ 
η P :: (c : A1 t A2), Ψ structural, and procc(P ) poised, then either

Ψ 
η P :: (c : A1) or Ψ 
η P :: (c : A2).

• If Ψ, d : A1 uA2 
η P :: (c : β), Ψ structural, β structural, and procc(P ) blocked on d,

then either Ψ, d : A1 
η P :: (c : β) or Ψ, d : A2 
η P :: (c : β).

Proof. By inversion on the typing judgement and lemma 5.6.

Finally, we will need a way to relate the channels in a typing context to the process being

typed.

Lemma 5.8. If Ψ `η P :: (c : α) and procc(P ) blocked on d where c 6= d, then

d ∈ dom Ψ.

Proof. Follows from a simple induction on the typing derivation.
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5.4 Equivalence to the Declarative System

We are now ready to prove that the algorithmic system is equivalent (modulo type

annotations) to the declarative system. We do this by showing the soundness and

completeness of the algorithmic system with respect to the declarative system.

5.4.1 Soundness

Theorem 5.9 (Soundness of Algorithmic Typing). If Ψ 
η P :: (c : α), then
d

Ψ `η′
JP K :: (c :

⊔
α) where η′ is η suitably converted using

d
and

⊔
.

Proof. We proceed by induction on the typing derivation.

Case uR : This is one of the two tricky cases (the other is the dual tL). In fact, this

case is the reason we needed distributivity of intersection over union. Assume

D : Ψ 
η P :: (c : A,α) and E : Ψ 
η P :: (c : B,α). We have the following

derivation:

inductioHyp (D)d
Ψ 
η P :: (c : A t

⊔
α)

inductioHyp (E)d
Ψ 
η P :: (c : B t

⊔
α)

d
Ψ 
η P :: (c : (A t

⊔
α) u (B t

⊔
α))

uR Remark 4.1
. . .⇒ . . .

d
Ψ 
η P :: (c :

⊔
(A uB,α))

SubR

where remark 4.1 is used to prove (A t
⊔
α) u (B t

⊔
α)⇒ (A uB) t

⊔
α.

Case uL : Follows from SubL (we need subtyping to reorder the large intersection) and

the induction hypothesis.

Case tR : Follows from SubR (to reorder the large union) and the induction hypothesis.

Case tL : Similar to uR.

Case µR, µL : Follows immediately from SubR and SubL, respectively.

Case id : Follows by an application of SubR and id. We note that if α ⇒ β, then
d
α⇒

⊔
β by a trivial induction on the sum of the number of types in α and β.

Case cut : Follows immediately from cut and the two induction hypotheses.

Case 1R,⊗R,⊕R,( R,&R : Follows from SubR to “pick out the right type” followed by

the corresponding rule in the declarative system.

Case 1L,⊗L,⊕L,( L,&L : Follows from SubL to “pick out the right type” followed by

the corresponding rule in the declarative system.
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Case µ : Follows immediately from the induction hypothesis.

Case var : Follows from SubR, SubL, and the induction hypothesis.

5.4.2 Completeness

Lemma 5.10 (Completeness of Delayed Subtyping). The following are admissible:

• If Ψ 
η P :: (c : α) and
⊔
α⇒ β then Ψ 
η P :: (c : β).

• If Ψ, d : α 
η P :: (c : β) and α′ ⇒
d
α then Ψ, d : α′ 
η P :: (c : β).

Note that P stays the same, which means type annotations do not need to change.

Proof. We only show the first part since the two parts are similar. We will use lexicographic

induction, first on the structure of P , then on size Ψ + sizeα+ sizeβ. Assume D : Ψ 
η

P :: (c : α) and E :
⊔
α⇒ β.

• If β contains a non-structural type, we use lemma 4.2 to break it down and apply

the induction hypotheses. The result follows from uR, tR, or µR.

• Otherwise, we know β structural, and case on the last rule in D.

– D is by uL, tL, or µL. Follows from the induction hypotheses and the same

rule.

– D is by uR: This is the most interesting case of the proof. We have:

D =
D1 : Ψ 
η P :: (c : A1, α

′) D2 : Ψ 
η P :: (c : A2, α
′)

Ψ 
η P :: (c : A1 uA2, α
′)

uR

By inversion on E , we have A1 u A2 ⇒ β and α′ ⇒ β. Since β structural,

either A1 ⇒ β or A2 ⇒ β. In the former case, we have A1, α
′ ⇒ β, so we can

apply the induction hypothesis on D1 and get the desired result. In the latter,

we apply it on D2.

– D is by tR: We have α = A1 tA2, α
′ where tR is applied on A1 tA2. Since⊔

(A1, A2, α
′) ⇒

⊔
(A1 tA2, α

′), we know
⊔

(A1, A2, α
′) ⇒ β. The result

follows immediately by the induction hypothesis.

– D is by µR: Similar to above since [µt.At/t]At ⇒ µt.At.

– D is by id. Follows from the transitivity of ⇒.
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– D is by cut. We have

D =
D1 : Ψ1 
η Q :: (d : α) D2 : Ψ2, d : B 
η Q :: (d : α)

Ψ1,Ψ2 
η d : B ← Q ; P ′ :: (c : α)
cut

The induction hypothesis on D2 and E gives Ψ2, d : A 
η Q :: (d : β). cut on

this and D1 gives the result.

– D is by 1L, ⊗L, ⊕L, ( L, or &L. Follows the same structure as the case for

cut.

– D is by 1R, ⊗R, ⊕R, ( R, or &R. The rule must be applied on some type

A ∈ α. We have E ′ : A⇒ β by inversion on E . Since β structural, another

inversion on E ′ gives the necessary subtyping relation(s). We match these with

the sub-derivations from D which lets us apply the induction hypotheses. The

result follows from the same rule using these.

– D is by µ. Follows immediately from the induction hypothesis.

– D is by var. Follows from the transitivity of ⇒.

Theorem 5.11 (Completeness of Algorithmic Typing). If Ψ `η P :: (c : A), then there

exists P ′ such that JP ′K = P and Ψ 
η P ′ :: (c : A).

Proof. We proceed by induction on the typing derivation.

Case id : We use id and the fact that ⇒ is reflexive.

Case cut : Follows from cut and the two induction hypotheses. We use the type from

the derivation of the first branch to annotate P .

Case 1R,⊗R,⊕R,( R,&R : Follows immediately from the corresponding rule and the

induction hypotheses.

Case 1L,⊗L,⊕L,( L,&L : Follows immediately from the corresponding rule and the

induction hypotheses.

Case SubR, SubL : Follows from the induction hypothesis and lemma 5.10.

Case uR : The induction hypotheses give the two premises needed to apply the cor-

responding rule in the algorithmic system. The only problem is, the annotated

processes returned by the two hypotheses need not have the same annotations. We

believe taking the intersection of corresponding annotations should be sufficient,

though we could not come up with a proof.
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Case tL : Similar to the previous case.

Case µ, var : Follows immediately from the induction hypotheses.

5.5 Type Safety

In this section, we prove type safety for the algorithmic system. Through the equivalence

of the algorithmic system to the declarative system, we also establish type safety for the

declarative system.

Note that we did not add new forms of processes, so process configurations and reduction

are the same as in section 2.5. We have, however, altered process typing quite a bit. This

will require a change in the structure of progress and preservation proofs. We also slightly

modify configuration typing to use the new rules:

Ψ 
∅ P :: (c : A) |= Ω :: Ψ

|= Ω, procc(P ) :: (c : A)
config1

Note that we use singular types (rather than multisets of types) at the top level. The

other cases (config0 and confign) are the same as before. Even though we use the

algorithmic typing judgement in this definition, the results below will hold for declarative

typing since these systems are equivalent.

5.5.1 Progress

We need to use a slightly different inversion lemma than we did in section 2.5.2:

Lemma 5.12 (Process Inversion). If Ψ 
η P :: (c : A), Ψ′, c : A 
η Q :: (d : β), and

procc(P ) poised, then the following hold:

• If Q = wait d ; Q′ then P = close c.

• If Q = x← recv d ; Q′ then P = send c (e← Re) ; P ′.

• If Q = send d (e← Re) ; Q′ then P = x← recv c ; P ′.

• If Q = case d of {labk → Q′k}k∈I then P = c.labi ; P ′ and i ∈ I.

• If Q = d.labi ; Q′ then P = case c of {labk → P ′k}k∈I and i ∈ I.
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Proof. Let D : Ψ 
η P :: (c : A) and E : Ψ′, c : A 
η Q :: (d : β). Since we are

only interested in cases where procd(Q) is communicating along c, we can assume

procd(Q) blocked on c.5 We proceed by induction on size Ψ + sizeA+ size Ψ′ + sizeβ.

• If Ψ, Ψ′, or β contains a non-structural type, we use lemma 5.5 to break it down

and apply the induction hypothesis on the derivation we get. In cases where there

are two derivations, we pick either.

• If A is a µ, we use lemma 5.5 on D and on E , and apply the induction hypothesis.

• Otherwise, we have Ψ structural, Ψ′ structural, and β structural, and we

know A is not a µ.

– If A = A1 u A2, corollary 5.7 on E gives either E1 : Ψ′, c : A1 
η Q :: (d : β)

or E : Ψ′, c : A2 
η Q :: (d : β). In the former case, inversion on D gives

D1 : Ψ 
η P :: (c : A1) and we can immediately apply the induction hypothesis

on D1 and E1. The latter case is symmetric.

– If A = A1 tA2, then we apply corollary 5.7 on D this time and use inversion

on E . We get matching cases and apply the induction hypothesis.

– Otherwise, A must be a structural type, D must be by a structural rule on the

right, and E must be by a structural rule on c. Inversion on E and the form of

Q forces the form of A (e.g. if Q = wait d ; Q′ then A = 1). Then, inversion

on D reveals the form of P , and the form of A forces it to be complementary

to the form of Q.

Given lemma 5.12, progress follows quite trivially:

Theorem 5.13 (Progress). If |= Ω :: Ψ then either

1. Ω −→ Ω′ for some Ω′, or

2. Ω is poised.

Proof. We proceed by induction on the derivation of |= Ω :: Ψ. The case for multiple

channels follows immediately from the induction hypotheses. For the single channel case,

we know Ω = Ω′, procc(P ). By inversion, D : Ψc 
∅ P :: (c : A) and E :|= Ω′ :: Ψc. By

the induction hypothesis, either Ω′ takes a step, in which case Ω takes a step and we are

done, or Ω′ is poised. Assume Ω′ is poised. We case on the structure of P :
5Otherwise, inversion on Q shows that all of the equalities in the statement of the lemma are false.

Thus, the result follows vacuously.
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• If P is a forward, a spawn, or a recursive process then Ω steps by id, cut, or rec,

respectively.

• If procc(P ) poised, then Ω is poised.

• Otherwise, we must have procc(P ) blocked on d where c 6= d. By lemma 5.8,

d : B ∈ Ψc. Inversion on E gives Ψd 
η Q :: (d : B) where procd(Q) ∈ Ω′. Since Ω′

is poised, procd(Q) is poised. We can then apply lemma 5.12, which shows that P

and Q have matching forms and can take a step together.

5.6 Type Preservation

First, we need the following inversion results.

Lemma 5.14 (Inversion of Id). If Ψ 
η c← d :: (c : α), then Ψ = d : β and β ⇒ α.

Proof. By induction on the typing derivation. The case for id is immediate. Otherwise,

the last rule must be one of uR, uL, tR, tL, µR, or µL, in which case we immediately

apply the induction hypotheses and combine the results with the corresponding subtyping

rule.

Lemma 5.15 (Inversion of Cut). If Ψ 
η d : A← Pd ; Qd :: (c : α) then there exist Ψ1

and Ψ2 such that Ψ = (Ψ1,Ψ2), Ψ1 
η Qd :: (d : A), and Ψ2, d : A 
η Pd :: (c : α).

Proof. Let P = d : A← Qd ; P ′d and D : Ψ 
η P :: (c : α). We proceed by induction on

D.

• If D is by cut, we have the desired result.

• If D is by uL or µL on channel e ∈ dom Ψ, we apply the induction hypothesis to get

two derivations. The results follows from the same rule on one of the derivations

(depending on whether e ∈ dom Ψ1 or e ∈ dom Ψ2).

• If D is by tR or µR, the result follows from the induction hypothesis and the same

rule on the typing derivation for P ′d.

• Otherwise, D is by uR or tL. Since the case for tL is slightly more complicated,

we will show that. We have:

D =
D1 : Ψ′, e : (β,B) 
η P :: (c : α) D2 : Ψ′, e : (β,C) 
η P :: (c : α)

Ψ′, e : (β,B t C) 
η P :: (c : α)
tL
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Induction hypothesis on D1 gives ΨB
1 ,Ψ

B
2 such that Ψ′, e : (β,B) = (ΨB

1 ,Ψ
B
2 ),

E1 : ΨB
1 
η Qd :: (d : A) and E2 : ΨB

2 , d : A 
η P ′d :: (c : α). Similarly, from D2

we get ΨC
1 ,Ψ

C
2 such that Ψ′, e : (β,C) = (ΨC

1 ,Ψ
C
2 ), F1 : ΨC

1 
η Qd :: (d : A) and

F2 : ΨC
2 , d : A 
η P ′d :: (c : α). By corollary 4.11, we know dom ΨB

1 = dom ΨC
1 and

dom ΨB
2 = dom ΨC

2 , so we get the desired results by an application of tL on E1 and

F1 or E2 and F2, depending on whether e ∈ ΨB
1 or e ∈ ΨB

2 .

Proof of preservation is a lot more cumbersome, as we have to roll a different induction

for each case.

Theorem 5.16 (Preservation). If |= Ω :: Ψ and Ω −→ Ω′ then |= Ω′ :: Ψ.

Proof. By lemma 2.7, it suffices to consider the subtree which types the root of reduction.

So, assume Ω1 −→ Ω2 and |= Ω1 :: (c : A) where c is the root of Ω1 −→ Ω2. We need to

show |= Ω2 :: (c : A).

By inversion, Ω1 = (Ωc, procc(P )), D : Ψc 
∅ P :: (c : A), and E : |= Ωc :: Ψc. We

proceed by case analysis on Ω1 −→ Ω2.

id : P = c ← d and Ω2 = [c/d]Ωc. By lemma 5.14, Ψc = d : D where D ⇒ A. From

lemma 5.10 and E , we know |= Ωc :: (d : A), thus, |= [c/d]Ωc :: (c : A).

cut : P = x : A ← Qx ; P ′x and Ω2 = Ωc, proca(Qa), procc(P
′
a) where a is fresh. The

result follows straightforwardly from lemma 5.15 and substitution.

rec : Follows by a standard substitution lemma for process variables.

In all other cases, we have procc(P ) blocked on d. By lemma 5.8, Ψc = Ψ′c, d : D for

some D, and procd(Q) ∈ Ωc for some Q. Inversion on E gives Ωc = Ω′c,Ωd, procd(Q),

F1 : Ψd 
∅ Q :: (d : D) and F2 : |= Ωd :: Ψd. We only give a representative subset of all

cases:

one : P = wait d ; P ′ and Q = close d. First, we claim Ψd = ∅.

Proof. By induction on F1. Cases for property rules follow immediately from the

induction hypothesis (by picking either branch for uR and tL). The only other

valid case is 1R, which requires the context to be empty, as desired.

This shows Ωd = ∅. Next, we show Ψ′c 
∅ P
′ :: (c : A).



Chapter 5 An Algorithmic System 53

Proof. We would like to use induction on D, however, we need to generalize the

induction hypothesis. So instead, we show: for all Ψ, β, and α, if D′ : Ψ, d : β 
η

wait d ; P ′ :: (c : α), then Ψ 
η P ′ :: (c : α). Using this with D gives the desired

result.

If D′ is by a property rule on d, we immediately apply the induction hypothesis

(either one for tL). If it is by a property rule on Ψ or A, the result follows from the

same rule on the induction hypotheses. Otherwise, D′ must be by 1L, which gives

the result immediately.

At this point, we know Ω2 = Ω′c, procc(P
′), which can easily be typed using the

previous result.

tensor : P = x ← recv d ; P ′x and Q = send d (x ← Rx) ; Q′. In addition, Ω2 =

Ωc,Ωd, proca(Ra), procd(Q
′), procc(P

′
a) where a is fresh. We claim there exist Ψ1

d,

Ψ2
d, D1, and D2 such that Ψd = (Ψ1

d,Ψ
2
d), Ψ1

d 
∅ Ra :: (a : D1), Ψ2
d 
∅ Q

′ :: (d : D2),

and Ψ′c, a : D1, d : D2 
∅ P
′
a :: (c : A).

Proof. By induction on size Ψ′c + sizeA+ size Ψd + sizeD and using D and F1. We

assume Ψ′c, A, D, and Ψd are sufficiently generalized (all of them are made free,

and all but D is made into multisets). We use α instead of A in the remainder of

the proof to emphasize it is a multiset of types.

• If Ψ′c or α contains a recursive type, or Ψ′c contains an intersection, or α

contains a union, we use lemma 5.5 on D and apply the induction hypothesis.

The result follows from µL, µR, uL, or tR, respectively.

• If α contains an intersection, we use lemma 5.5 on D and apply the induction

hypotheses, which give:

G1 : Ψ1
d 
∅ Ra :: (a : D1

1) H1 : Ψ2
d 
∅ Q

′ :: (d : D1
2)

D1 : Ψ′c, a : D1
1, d : D1

2 
∅ P
′
a :: (c : A1, α

′)

G2 : Ψ3
d 
∅ Ra :: (a : D2

1) H2 : Ψ4
d 
∅ Q

′ :: (d : D2
2)

D2 : Ψ′c, a : D2
1, d : D2

2 
∅ P
′
a :: (c : A2, α

′)

By corollary 4.11, Ψ1
d = Ψ3

d and Ψ2
d = Ψ4

d. From lemma 5.4 and uL on D1 and

D2, we have:

D′1 : Ψ′c, a : D1
1 uD2

1, d : D1
2 uD2

2 
∅ P
′
a :: (c : A1, α

′)

D′2 : Ψ′c, a : D1
1 uD2

1, d : D1
2 uD2

2 
∅ P
′
a :: (c : A2, α

′)
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Thus, by an application of uR on D′1 and D′2, we get

Ψ′c, a : D1
1 uD2

1, d : D1
2 uD2

2 
∅ P
′
a :: (c : α).

Moreover, applying uR on G1 and G2, and on H1 and H2 gives

Ψ1
d 
∅ Ra :: (a : D1

1 uD2
1) Ψ2

d 
∅ Q
′ :: (d : D1

2 uD2
2)

respectively. Picking D1 = D1
1 uD2

1 and D2 = D1
2 uD2

2 gives the result.

• The case where Ψ′c contains a union is similar to the previous one.

• If some e ∈ dom Ψd contains a recursive type or an intersection, we use

lemma 5.5 on F1 and apply the induction hypothesis. The result follows from

µL or uL, respectively, applied on either Ψ1
d or Ψ2

d, depending on whichever

contains e.

• If some e ∈ dom Ψd contains a union, we use lemma 5.5 on F1 and apply the

induction hypotheses, which give:

G1 : Ψ1
d, e : (β′, B1) 
∅ Ra :: (a : D1

1) H1 : Ψ2
d 
∅ Q

′ :: (d : D1
2)

D1 : Ψ′c, a : D1
1, d : D1

2 
∅ P
′
a :: (c : α)

G2 : Ψ1
d, e : (β′, B2) 
∅ Ra :: (a : D2

1) H2 : Ψ2
d 
∅ Q

′ :: (d : D2
2)

D2 : Ψ′c, a : D2
1, d : D2

2 
∅ P
′
a :: (c : α)

Here, we assume without loss of generality that e ∈ dom Ψ1
d. We have also

unified the contexts using corollary 4.11. From lemma 5.4 and tR on G1 and

G2, followed by tL on the results, we get:

G : Ψ1
d, e : β 
∅ Ra :: (a : D1

1 tD2
1).

From uR on H1 and H2, we get

H : Ψ2
d 
∅ Q

′ :: (d : D1
2 uD2

2).

Finally, by lemma 5.4 and uL on D1 and D2, followed by tL on the results,

we have

Ψ′c, a : D1
1 tD2

1, d : D1
2 uD2

2 
∅ P
′
a :: (c : α).

We pick D1 = D1
1 tD2

1 and D2 = D1
2 uD2

2 for the result.

• Otherwise, we have Ψ′c structural, Ψd structural, and α structural,

which means corollary 5.7 becomes applicable on D and F1. We case on the

structure of D:
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– If D is a recursive type, D must be by µL and F1 must be by µR. We

apply the induction hypotheses on the premises, which immediately gives

the result.

– If D = D1 u D2, then inversion on F1 gives G1 : Ψd 
∅ Q :: (d : D1)

and G2 : Ψd 
∅ Q :: (d : D2). Additionally, Corollary 5.7 on D gives

H1 : Ψc, d : D1 
∅ P :: (c : α) or H2 : Ψc, d : D2 
∅ P :: (c : α). Applying

induction hypothesis with G1 and H1 or with G2 and H2 (depending on

which side of the or we have) gives the result.

– If D = D1 tD2, we apply inversion on D and corollary 5.7 on F1. We get

matching cases, and we can apply the induction hypothesis.

– Otherwise, D structural. Inversion on F1 gives D = D1 ⊗D2 and the

corresponding typing derivations for Rx and Q′. Inversion on D gives the

typing derivation for P ′x. We get the desired result by substituting a for x.

Finally, we can split Ωd into Ω1
d and Ω2

d such that |= Ω1
d :: Ψ1

d and |= Ω2
d :: Ψ2

d. It is

simple to put together a derivation for Ω2 using the results above.

internal, lolli, external : Similar to above.
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Conclusion

We introduced intersections and unions to a simple system of session types, and demon-

strated how they can be used to refine behavioral specifications of processes. Some aspects

that would be important in a full accounting of the system are omitted for simplifying the

presentation or are left as future work. For example, integrating an underlying functional

language [22], adding shared channels [4, 18], or considering asynchronous communication

[8, 18, 15] are straightforward extensions based on prior work. In addition, it would be

very useful to have behavioral polymorphism [3] and abstract types. Their interaction

with subtyping, intersections, and unions is an interesting avenue for future work.

56
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Concrete Syntax

The formal grammar of the concrete syntax is presented below. We use [pattern] for

optional productions and {pattern} for zero or more repetitions.

〈top〉 ::= { 〈typedef 〉 | 〈typesig〉 | 〈procdef 〉 }

〈typedef 〉 ::= ‘type’ 〈typename〉 ‘=’ 〈type〉

〈typesig〉 ::= 〈procname〉 ‘:’ 〈type〉

〈procdef 〉 ::= 〈channel〉 ‘<-’ 〈procname〉 〈args〉 ‘=’ 〈proc〉

〈type〉 ::= 〈typename〉
| ‘1’

| 〈type〉 ‘*’ 〈type〉
| ‘+’ ‘{’ 〈fields〉 ‘}’
| 〈type〉 ‘-o’ 〈type〉
| ‘&’ ‘{’ 〈fields〉 ‘}’
| 〈type〉 ‘and’ 〈type〉
| 〈type〉 ‘or’ 〈type〉
| ‘(’ 〈type〉 ‘)’

〈proc〉 ::= 〈channel〉 ‘<-’ 〈channel〉
| 〈channel〉 ‘<-’ 〈procname〉 〈args〉 ‘;’ 〈proc〉
| ‘close’ 〈channel〉
| ‘wait’ 〈channel〉 ‘;’ 〈proc〉
| ‘send’ 〈channel〉 ‘(’ 〈channel〉 ‘<-’ 〈proc〉 ‘)’ ‘;’ 〈proc〉
| ‘send’ 〈channel〉 〈channel〉 ‘;’ 〈proc〉
| 〈channel〉 ‘<-’ ‘recv’ 〈channel〉 ‘;’ 〈proc〉
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| 〈channel〉 ‘.’ 〈label〉 ‘;’ 〈proc〉
| ‘case’ 〈channel〉 ‘of’ { 〈branch〉 }

〈args〉 ::= { 〈channel〉 }

〈fields〉 ::= 〈field〉 ‘,’ ... ‘,’ 〈field〉

〈field〉 ::= 〈label〉 ‘:’ 〈type〉

〈branch〉 ::= 〈label〉 ‘->’ 〈proc〉

Here, 〈typename〉, 〈procname〉, 〈channel〉, and 〈label〉 consist of alphanumerical characters,

except 〈channel〉 starts with a backtick (‘). 〈typename〉 starts with an uppercase letter,

whereas 〈procname〉 and 〈label〉 both start with lowercase letters.



Appendix B

Another Example: Bit Strings

Here, we give a slightly more involved example where we define a more interesting property

using recursive refinements.

First, we define process level bit string:

type Bits = +{eps : 1, zero : Bits , one : Bits}

Here, eps is the empty string, zero and one append a least significant bit. We can define

bit strings in standard form (no leading zeros) as follows:

type Empty = +{eps : 1}

type Std = Empty or StdPos

type StdPos = +{one : Std , zero : StdPos}

Then, we can write an increment function that preserves bit strings in standard form:

inc : Std -o Std and StdPos -o StdPos and Empty -o StdPos

‘c <- inc ‘d =

case ‘d of
eps -> wait ‘d; ‘c.one; ‘c.eps; c lose ‘c

zero -> ‘c.one; ‘c <- ‘d

one -> ‘c.zero; ‘c <- inc ‘d

Note that checking this definition just against the type Std -o Std will fail, and we need

to assign the more general type for the type checking to go through. This is because

of the bidirectional nature of our system which essentially requires the type checker to

check a fixed point rather than infer the least one. This has proven highly beneficial for

providing good error messages even without the presence of intersections and unions [15].
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